Lyapunov Type Theorems for Exponential Stability of Linear Skew-Product Three-Parameter Semiflows with Discrete Time

被引:6
作者
Dragicevic, Davor [1 ]
Preda, Ciprian [2 ,3 ]
机构
[1] Univ Rijeka, Dept Math, Radmile Matejcic 2, Rijeka 51000, Croatia
[2] West Univ Timisoara, Fac Math & Comp Sci, Dept Math, V Parvan Blvd 4, Timisoara 300223, Romania
[3] Romanian Acad, Inst Econ Forecasting, Bucharest 050711, Romania
关键词
exponential stability; linear skew-product semiflows; Lyapunov functions; DICHOTOMIES; BEHAVIOR; SPACES; DATKO;
D O I
10.3390/axioms9020047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For linear skew-product three-parameter semiflows with discrete time acting on an arbitrary Hilbert space, we obtain a complete characterization of exponential stability in terms of the existence of appropriate Lyapunov functions. As a nontrivial application of our work, we prove that the notion of an exponential stability persists under sufficiently small linear perturbations.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 1954, On A Certain Property of the Differential Equations in A Problem on the Motion of A Heavy Rigid Body Having A Fixed Point
[2]   A Rolewicz-type characterization of nonuniform behaviour [J].
Backes, Lucas ;
Dragicevic, Davor .
APPLICABLE ANALYSIS, 2021, 100 (14) :3011-3032
[3]  
Barreira L., 2018, SPRINGER BRIEFS MATH
[4]   Lyapunov type characterization of hyperbolic behavior [J].
Barreira, Luis ;
Dragicevic, Davor ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) :3147-3173
[5]   Nonuniform Exponential Dichotomies and Lyapunov Functions [J].
Barreira, Luis ;
Dragicevic, Davor ;
Valls, Claudia .
REGULAR & CHAOTIC DYNAMICS, 2017, 22 (03) :197-209
[6]   Lyapunov functions for strong exponential contractions [J].
Barreira, Luis ;
Dragicevic, Davor ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (03) :449-468
[7]   Lyapunov functions for strong exponential dichotomies [J].
Barreira, Luis ;
Dragicevic, Davor ;
Valls, Claudia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) :116-132
[8]   Lyapunov Functions and Cone Families [J].
Barreira, Luis ;
Dragicevic, Davor ;
Valls, Claudia .
JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (01) :137-163
[9]   Lyapunov sequences for exponential dichotomies [J].
Barreira, Luis ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :183-215
[10]  
Bhatia N., 1970, grundlehren der mathematischen wissenschaften, V161