Estimating Individualized Treatment Rules Using Outcome Weighted Learning

被引:472
作者
Zhao, Yingqi [1 ]
Zeng, Donglin [1 ]
Rush, A. John [2 ]
Kosorok, Michael R. [1 ,3 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Duke Nat Univ Singapore, Grad Sch Med, Off Clin Sci, Singapore 169857, Singapore
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
关键词
Bayes classifier; Cross-validation; Dynamic treatment regime; Individualized treatment rule; Risk bound; RKHS; Weighted support vector machine; SUPPORT VECTOR MACHINES; DYNAMIC TREATMENT REGIMES; CANCER-TREATMENT; RISK; CLASSIFICATION; CONSISTENCY; PSYCHOTHERAPY; CHEMOTHERAPY; CLASSIFIERS; PERFORMANCE;
D O I
10.1080/01621459.2012.695674
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.
引用
收藏
页码:1106 / 1118
页数:13
相关论文
共 41 条
[1]   Convexity, classification, and risk bounds [J].
Bartlett, PL ;
Jordan, MI ;
McAuliffe, JD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :138-156
[2]   Local Rademacher complexities [J].
Bartlett, PL ;
Bousquet, O ;
Mendelson, S .
ANNALS OF STATISTICS, 2005, 33 (04) :1497-1537
[3]   Statistical performance of support vector machines [J].
Blanchard, Gilles ;
Bousquet, Olivier ;
Massart, Pascal .
ANNALS OF STATISTICS, 2008, 36 (02) :489-531
[4]  
BRADLEY PS, 1998, P 15 INT C MACH LEAR, P82
[5]   Role of biologic therapy and chemotherapy in hormone receptor- and HER2-positive breast cancer [J].
Buzdar, A. U. .
ANNALS OF ONCOLOGY, 2009, 20 (06) :993-999
[6]   Calibrating parametric subject-specific risk estimation [J].
Cai, T. ;
Tian, L. ;
Uno, Hajime ;
Solomon, Scott D. ;
Wei, L. J. .
BIOMETRIKA, 2010, 97 (02) :389-404
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]   Psychosocial treatments for cocaine dependence -: National Institute on Drug Abuse Collaborative Cocaine Treatment Study [J].
Crits-Christoph, P ;
Siqueland, L ;
Blaine, J ;
Frank, A ;
Luborsky, L ;
Onken, LS ;
Muenz, LR ;
Thase, ME ;
Weiss, RD ;
Gastfriend, DR ;
Woody, GE ;
Barber, JP ;
Butler, SF ;
Daley, D ;
Salloum, I ;
Bishop, S ;
Najavits, LM ;
Lis, J ;
Mercer, D ;
Griffin, ML ;
Moras, K ;
Beck, AT .
ARCHIVES OF GENERAL PSYCHIATRY, 1999, 56 (06) :493-502
[9]   A validated prediction model for all forms of acute coronary syndrome - Estimating the risk of 6-month postdischarge death in an international registry [J].
Eagle, KA ;
Lim, MJ ;
Dabbous, OH ;
Pieper, KS ;
Goldberg, RJ ;
Van de Werf, F ;
Goodman, SG ;
Granger, CB ;
Steg, PG ;
Gore, JM ;
Budaj, A ;
Avezum, A ;
Flather, MD ;
Fox, KAA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 291 (22) :2727-2733
[10]   Cystic fibrosis pulmonary guidelines - Chronic medications for maintenance of lung health [J].
Flume, Patrick A. ;
O'Sullivan, Brian P. ;
Robinson, Karen A. ;
Goss, Christopher H. ;
Mogayzel, Peter J., Jr. ;
Willey-Courand, Donna Beth ;
Bujan, Janet ;
Finder, Jonathan ;
Lesters, Mary ;
Quittell, Lynne ;
Rosenblatt, Randall ;
Vender, Robert L. ;
Hlazle, Leslie ;
Sabadosa, Kathy ;
Marshall, Bruce .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2007, 176 (10) :957-969