Deciphering microbial community robustness through synthetic ecology and molecular systems synecology

被引:59
作者
Stenuit, Ben [1 ]
Agathos, Spiros N. [1 ]
机构
[1] Catholic Univ Louvain, Earth & Life Inst, Bioengn Lab, B-1348 Louvain, Belgium
关键词
WASTE-WATER TREATMENT; BACTERIAL COMMUNITIES; NITRIFIER COMMUNITY; RESOURCE-MANAGEMENT; ASSEMBLY PROCESSES; SOIL; RESILIENCE; DIVERSITY; STABILITY; DYNAMICS;
D O I
10.1016/j.copbio.2015.03.012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microbial ecosystems exhibit specific robustness attributes arising from the assembly and interaction networks of diverse, heterogeneous communities challenged by fluctuating environmental conditions. Synthetic ecology provides new insights into key biodiversity-stability relationships and robustness determinants of host-associated or environmental microbiomes. Driven by the advances of meta-omics technologies and bioinformatics, community-centered approaches (defined as molecular systems synecology) combined with the development of dynamic and mechanistic mathematical models make it possible to decipher and predict the outcomes of microbial ecosystems under disturbances. Beyond discriminating the normal operating range and natural, intrinsic dynamics of microbial processes from systems-level responses to environmental forcing, predictive modeling is poised to be integrated within prescriptive analytical frameworks and thus provide guidance in decision-making and proactive microbial resource management.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 85 条
[1]   Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales [J].
Angeler, David G. ;
Allen, Craig R. ;
Johnson, Richard K. .
JOURNAL OF APPLIED ECOLOGY, 2013, 50 (03) :572-584
[2]   Increasing antagonistic interactions cause bacterial communities to collapse at high diversity [J].
Becker, Joachim ;
Eisenhauer, Nico ;
Scheu, Stefan ;
Jousset, Alexandre .
ECOLOGY LETTERS, 2012, 15 (05) :468-474
[3]   Deciphering microbial interactions and detecting keystone species with co-occurrence networks [J].
Berry, David ;
Widder, Stefanie .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[4]   Towards Predictive Models of the Human Gut Microbiome [J].
Bucci, Vanni ;
Xavier, Joao B. .
JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (23) :3907-3916
[5]   Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine [J].
Buergmann, Helmut ;
Jenni, Sarina ;
Vazquez, Francisco ;
Udert, Kai M. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (17) :5897-5907
[6]   A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses [J].
Buttigieg, Pier Luigi ;
Ramette, Alban .
FEMS MICROBIOLOGY ECOLOGY, 2014, 90 (03) :543-550
[7]   Development and Validation of a Chemostat Gut Model To Study Both Planktonic and Biofilm Modes of Growth of Clostridium difficile and Human Microbiota [J].
Crowther, Grace S. ;
Chilton, Caroline H. ;
Todhunter, Sharie L. ;
Nicholson, Scott ;
Freeman, Jane ;
Baines, Simon D. ;
Wilcox, Mark H. .
PLOS ONE, 2014, 9 (02)
[8]   Host lifestyle affects human microbiota on daily timescales [J].
David, Lawrence A. ;
Materna, Arne C. ;
Friedman, Jonathan ;
Campos-Baptista, Maria I. ;
Blackburn, Matthew C. ;
Perrotta, Allison ;
Erdman, Susan E. ;
Alm, Eric J. .
GENOME BIOLOGY, 2014, 15 (07)
[9]   From the selfish gene to selfish metabolism: Revisiting the central dogma [J].
de Lorenzo, Victor .
BIOESSAYS, 2014, 36 (03) :226-235
[10]   Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities [J].
De Roy, Karen ;
Marzorati, Massimo ;
Van den Abbeele, Pieter ;
Van de Wiele, Tom ;
Boon, Nico .
ENVIRONMENTAL MICROBIOLOGY, 2014, 16 (06) :1472-1481