A sharp inequality of Markov type for polynomials associated with Laguerre weight

被引:5
作者
Carley, H [1 ]
Li, X [1 ]
Mohapatra, RN [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
D O I
10.1006/jath.2001.3615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The best possible constant A(n) in an inequality of Markov type parallel tod/dx(e(-x)p(n)(x))parallel to([0,infinity)) less than or equal to Anparallel toe(-x)p(n)(x)parallel to([0,infinity)). where parallel to.parallel to([0,x)) denotes the sup-norm on the half real line [0, infinity) and p(n) is an arbitrary polynomial of degree at most n, is determined in terms of the weighted Chebyshev polynomials associated with the Laguerre weight e(-x) on [0, infinity). (C) 2001 Academic Press.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 19 条
[1]   On two polynomial inequalities of Erdos related to those of the brothers Markov [J].
Arsenault, M ;
Rahman, QI .
JOURNAL OF APPROXIMATION THEORY, 1996, 84 (02) :197-235
[2]  
BARAN M., 1998, MG TXB PUR APPL MATH, P75
[3]   CHEBYSHEV POLYNOMIALS AND MARKOV-BERNSTEIN TYPE INEQUALITIES FOR RATIONAL SPACES [J].
BORWEIN, P ;
ERDELYI, T ;
ZHANG, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :501-519
[4]  
Borwein P., 1995, Grad. Texts in Math., V161
[5]  
DORFLER P, 1991, SIAM J MATH ANAL, V22, P792, DOI 10.1137/0522049
[6]   ON THE INEQUALITIES OF BERNSTEIN-MARKOFF FOR AN INTERVAL [J].
FRAPPIER, C .
JOURNAL D ANALYSE MATHEMATIQUE, 1983, 43 :12-25
[7]   ON THE MARKOV INEQUALITY IN LP-SPACES [J].
GOETGHELUCK, P .
JOURNAL OF APPROXIMATION THEORY, 1990, 62 (02) :197-205
[8]  
Hille E, 1937, DUKE MATH J, V3, P729, DOI [10.1215/S0012-7094-37-00361-2, DOI 10.1215/S0012-7094-37-00361-2]
[9]   CANONICAL PRODUCTS AND THE WEIGHTS EXP(-[X]ALPHA), ALPHA-GREATER-THAN-1, WITH APPLICATIONS [J].
LEVIN, AL ;
LUBINSKY, DS .
JOURNAL OF APPROXIMATION THEORY, 1987, 49 (02) :149-169
[10]  
LI X, 1993, J APPROX THEORY, V75, P267