Some examples of forms of high rank

被引:16
作者
Buczynski, Jaroslaw [1 ,2 ]
Teitler, Zach [3 ]
机构
[1] Univ Warsaw, Fac Math Comp Sci & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Boise State Univ, Dept Math, 1910 Univ Dr, Boise, ID 83725 USA
关键词
Waring rank; Apolarity; Power sum decompositions;
D O I
10.1007/s13348-015-0152-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe some forms with greater Waring rank than previous examples. In 3 variables we give forms of odd degree with strictly greater rank than the ranks of monomials, the previously highest known rank. This narrows the possible range of values of the maximum Waring rank of forms in 3 variables. In 4 variables we give forms of odd degree with strictly greater than generic rank. In degrees >= 5 these are the first examples showing that there exist forms with Waring rank strictly greater than the generic value.
引用
收藏
页码:431 / 441
页数:11
相关论文
共 25 条
[1]  
Alexander J., 1995, J ALGEBRAIC GEOM, V4, P201
[2]  
Ballico E., 2013, ARXIV13123494MATHAG
[3]   On the cactus rank of cubic forms [J].
Bernardi, Alessandra ;
Ranestad, Kristian .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 :291-297
[4]   On maximum, typical and generic ranks [J].
Blekherman, Grigoriy ;
Teitler, Zach .
MATHEMATISCHE ANNALEN, 2015, 362 (3-4) :1021-1031
[5]   ON DIFFERENCES BETWEEN THE BORDER RANK AND THE SMOOTHABLE RANK OF A POLYNOMIAL [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw .
GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (02) :401-413
[6]   Waring decompositions of monomials [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw ;
Teitler, Zach .
JOURNAL OF ALGEBRA, 2013, 378 :45-57
[7]  
Carlini E., 2015, ARXIV150603176MATHAC
[8]   The solution to the Waring problem for monomials and the sum of coprime monomials [J].
Carlini, Enrico ;
Catalisano, Maria Virginia ;
Geramita, Anthony V. .
JOURNAL OF ALGEBRA, 2012, 370 :5-14
[9]   Decomposition of quantics in sums of powers of linear forms [J].
Comon, P ;
Mourrain, B .
SIGNAL PROCESSING, 1996, 53 (2-3) :93-107
[10]   SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK [J].
Comon, Pierre ;
Golub, Gene ;
Lim, Lek-Heng ;
Mourrain, Bernard .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1254-1279