Low temperature photoluminescence of a nanostructured silicon based semiconductor for potential applications

被引:0
作者
Raddenzati, A. [1 ]
Hosatte, M. [2 ]
Basta, M. [3 ]
Kuznicki, Z. T. [4 ]
Remouche, M. [2 ]
Meyrueis, P. [5 ]
Haeberle, O. [1 ]
机构
[1] Univ Haute Alsace, Lab MIPS, 61 Rue Albert Camus, F-68093 Mulhouse, France
[2] Volumion, 4 Rue Bonnes Gens, F-68100 Mulhouse, France
[3] Alstri Polska, Bartycka 18a, PL-00716 Warsaw, Poland
[4] Segton ADT, 31 Ave Marechal Douglas Haig, F-78000 Versailles, France
[5] Univ Strasbourg, CNRS, ICube IPP, F-67412 Strasbourg, France
来源
SILICON PHOTONICS AND PHOTONIC INTEGRATED CIRCUITS V | 2016年 / 9891卷
关键词
nanostructured silicon; ion implantation; silicon defects; photoluminescence; low temperature; NANOCRYSTALS;
D O I
10.1117/12.2227525
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A nanoscale layer of amorphized silicon is obtained by implantations with silicon ions through a P-doped FZ-silicon wafer material few nanometers below the wafer surface. After a controlled annealing, the amorphized silicon material is sandwiched between two layers of recrystallized silicon. Defects remain at the interface c-Si / a-Si / c-Si. Photoluminescence at very low temperature is experimented to determine the energy levels generated by this design. TEM pictures show that some nanocrystalline elements are located close to the interface surrounded by a-Si. However, the photoluminescence spectra do not present any signal of luminescence from them. This could be due to random sizes of nanocrystals. Then, a scan from energies below the silicon bandgap has been realized at 8 K. The spectrum is composed of multiple narrow peaks close to the conduction band and a broadband from 0.78 eV to 1.05 eV. In order to determine the origin of these signals, spectra of three distinct peaks were collected at different temperatures from 8 K to 120 K. The broadband collapses more rapidly by increasing the temperature than the narrow lines and theirs maxima of intensity differ.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
Basta M., 2013, THESIS, P98
[2]  
Basta M., 2011, P SPIE, V8065
[3]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[4]   Absolute silicon photodiodes for 160 nm to 254 nm photons [J].
Canfield, LR ;
Vest, RE ;
Korde, R ;
Schmidtke, H ;
Desor, R .
METROLOGIA, 1998, 35 (04) :329-334
[5]  
Debieu O., 2008, THESIS
[6]   On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies [J].
Hannah, Daniel C. ;
Yang, Jihua ;
Podsiadlo, Paul ;
Chan, Maria K. Y. ;
Demortiere, Arnaud ;
Gosztola, David J. ;
Prakapenka, Vitali B. ;
Schatz, George C. ;
Kortshagen, Uwe ;
Schaller, Richard D. .
NANO LETTERS, 2012, 12 (08) :4200-4205
[7]  
Hernandez-Rodriguez C., 2003, P SPIE NANOTECHNOLOG, V5118
[8]  
Hosatte M., INCREASE INTERNAL QU
[9]  
Hosatte M., 2014, THESIS, P121
[10]   QUANTUM EFFICIENCY STABILITY OF SILICON PHOTODIODES [J].
KORDE, R ;
GEIST, J .
APPLIED OPTICS, 1987, 26 (24) :5284-5290