Stability and bifurcation in network traffic flow: A Poincare map approach

被引:13
作者
Jin, Wen-Long [1 ]
机构
[1] Univ Calif Irvine, Dept Civil & Environm Engn, Inst Transportat Studies, Calif Inst Telecommun & Informat Technol, Irvine, CA 92697 USA
关键词
Network kinematic wave theory; Diverge-merge network; Circular information propagation; Poincare map; Stability; Bifurcation;
D O I
10.1016/j.trb.2013.08.013
中图分类号
F [经济];
学科分类号
02 ;
摘要
Previous studies have shown that, in a diverge-merge network with two intermediate links (the DM network), the kinematic wave model always admits stationary solutions under constant boundary conditions, but periodic oscillations can develop from empty initial conditions. Such contradictory observations suggest that the stationary states be unstable. In this study we develop a systematic approach to investigate the stability property of stationary states in this and other networks within the framework of network kinematic wave theories. Based on the observation that kinematic waves propagate in a circular path when only one of the two intermediate links is congested, we derive a one-dimensional, discrete Poincare map in the out-flux at a Poincare section. We then prove that the fixed points of the Poincare map correspond to stationary flow-rates on the two links. With Lyapunov's first method, we demonstrate that the Poincare map can be finite-time stable, asymptotically stable, or unstable. When unstable, the map is found to have periodical points of period two, but no chaotic solutions. We further analyze the bifurcation in the stability of the Poincare map caused by varying route choice proportions. We apply the Poincare map approach to analyzing traffic patterns in more general (DM)(n) and beltway networks, which are sufficient and necessary structures for network-induced unstable traffic and gridlock, respectively. This study demonstrates that the Poincare map approach can be efficiently applied to analyze traffic dynamics in any road networks with circular information propagation and provides new insights into unstable traffic dynamics caused by interactions among network bottlenecks. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 208
页数:18
相关论文
共 33 条
[1]  
Ahn S., 2007, Transportation and Traffic Theory 2007
[2]   Effects of Merging and Diverging on Freeway Traffic Oscillations Theory and Observation [J].
Ahn, Soyoung ;
Laval, Jorge ;
Cassidy, Michael J. .
TRANSPORTATION RESEARCH RECORD, 2010, (2188) :1-8
[3]  
[Anonymous], 1996, A First Course in Discrete Dynamical Systems
[4]  
[Anonymous], P 15 INT S TRANSP TR
[5]  
[Anonymous], 2001, P 80 ANN M TRANSP RE
[6]   Real-World Carbon Dioxide Impacts of Traffic Congestion [J].
Barth, Matthew ;
Boriboonsomsin, Kanok .
TRANSPORTATION RESEARCH RECORD, 2008, (2058) :163-171
[7]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[8]  
BRESSAN A, 1996, MATH CONT, V10, P21
[9]   The Sharkovsky Theorem: A Natural Direct Proof [J].
Burns, Keith ;
Hasselblatt, Boris .
AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (03) :229-244
[10]   Urban gridlock: Macroscopic modeling and mitigation approaches [J].
Daganzo, Carlos F. .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2007, 41 (01) :49-62