DESINGULARIZATION OF COMPLEX MULTIPLE ZETA-FUNCTIONS

被引:12
|
作者
Furusho, Hidekazu [1 ]
Komori, Yasushi [2 ]
Matsumoto, Kohji [1 ]
Tsumura, Hirofumi [3 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
[2] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
ANALYTIC CONTINUATION; VALUES; SERIES;
D O I
10.1353/ajm.2017.0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the method of desingularization of multi-variable multiple zeta-functions (of the generalized Euler-Zagier type), under the motivation of finding a suitable rigorous meaning of the values of multiple zeta-functions at non-positive integer points. We reveal that multiple zeta-functions (which are known to be meromorphic in the whole space with infinitely many singular hyperplanes) turn out to be entire on the whole space after taking the desingularization. The desingularized function is given by a suitable finite "linear" combination of multiple zeta-functions with some arguments shifted. It is shown that specific combinations of Bernoulli numbers attain the special values at their non-positive integers of the desingularized ones. We also discuss twisted multiple zeta-functions, which can be continued to entire functions, and their special values at non-positive integer points can be explicitly calculated.
引用
收藏
页码:147 / 173
页数:27
相关论文
共 50 条
  • [21] ON WITTEN MULTIPLE ZETA-FUNCTIONS ASSOCIATED WITH SEMI-SIMPLE LIE ALGEBRAS IV
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 185 - 206
  • [22] ANALYTIC CONTINUATION OF MULTIPLE ZETA-FUNCTIONS AND THE ASYMPTOTIC BEHAVIOR AT NON-POSITIVE INTEGERS
    Onozuka, Tomokazu
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (02) : 331 - 348
  • [23] Values at non-positive integers of generalized Euler-Zagier multiple zeta-functions
    Essouabri, Driss
    Matsumoto, Kohji
    ACTA ARITHMETICA, 2020, 193 (02) : 109 - 131
  • [24] On the meromorphic continuation of Beatty Zeta-functions and Sturmian Dirichlet series
    Sourmelidis, Athanasios
    JOURNAL OF NUMBER THEORY, 2019, 194 : 303 - 318
  • [25] Asymptotic expansions for double Shintani zeta-functions of several variables
    Katsurada, Masanori
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 58 - 72
  • [26] ZETA-FUNCTIONS OF ROOT SYSTEMS AND POINCARE POLYNOMIALS OF WEYL GROUPS
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (01) : 87 - 126
  • [27] Cyclic relation for multiple zeta functions
    Murahara, Hideki
    Onozuka, Tomokazu
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [28] Interpolant of truncated multiple zeta functions
    Ihara, Kentaro
    Nakamura, Yayoi
    Yamamoto, Shuji
    RAMANUJAN JOURNAL, 2025, 67 (01):
  • [29] Products of weighted multiple zeta functions
    Viswanadham, G. K.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 147 : 26 - 39
  • [30] Analytic continuation of the multiple Fibonacci zeta functions
    Rout, Sudhansu Sekhar
    Meher, Nabin Kumar
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2018, 94 (06) : 64 - 69