Regularizing property of the maximal acceleration principle in quantum field theory

被引:35
作者
Nesterenko, VV [1 ]
Feoli, A
Lambiase, G
Scarpetta, G
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Univ Sannio, Fac Ingn, I-82100 Benevento, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[4] Univ Salerno, Dipartimento Sci Fis ER Caianiello, I-84081 Baronissi, SA, Italy
关键词
D O I
10.1103/PhysRevD.60.065001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that the introduction of an upper limit to the proper acceleration of a particle can smooth the problem of ultraviolet divergences in local quantum field theory. For this aim, the classical model of a relativistic particle with maximal proper acceleration is quantized canonically by making use of the generalized Hamiltonian formalism developed by Dirac. The equations for the wave function are treated as the dynamical equations for the corresponding quantum field. One may hope that using the Green's function connected to these wave equations as propagators will improve the convergence properties of Feynman integrals. [S0556-2821(99)03314-7].
引用
收藏
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 1989, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
[2]  
Barbashov B. M., 1990, INTRO RELATIVISTIC S
[3]   CONTINUOUS SYMMETRIES IN FIELD-THEORY [J].
BARBASHOV, BM ;
NESTERENKO, VV .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1983, 31 (10) :535-567
[4]  
BOGOLIUBOV NN, 1959, INTRO QUANTIZED FIEL
[5]   GEOMETRY FROM QUANTUM-MECHANICS [J].
CAIANIELLO, ER .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1980, 59 (02) :350-366
[6]   MAXIMAL ACCELERATION AS A CONSEQUENCE OF HEISENBERGS UNCERTAINTY RELATIONS [J].
CAIANIELLO, ER .
LETTERE AL NUOVO CIMENTO, 1984, 41 (11) :370-372
[7]   IS THERE A MAXIMAL ACCELERATION [J].
CAIANIELLO, ER .
LETTERE AL NUOVO CIMENTO, 1981, 32 (03) :65-70
[8]   ON THE CONFINING ASPECTS OF A CONFORMALLY FLAT GEOMETRY [J].
CAIANIELLO, ER ;
GASPERINI, M ;
PREDAZZI, E ;
SCARPETTA, G .
PHYSICS LETTERS A, 1988, 132 (2-3) :82-84
[9]   QUANTUM AND OTHER PHYSICS AS SYSTEMS-THEORY [J].
CAIANIELLO, ER .
RIVISTA DEL NUOVO CIMENTO, 1992, 15 (04) :1-65
[10]   QUANTUM CORRECTIONS TO THE SPACETIME METRIC FROM GEOMETRIC PHASE-SPACE QUANTIZATION [J].
CAIANIELLO, ER ;
FEOLI, A ;
GASPERINI, M ;
SCARPETTA, G .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (02) :131-139