Fault-tolerant finite control set-model predictive control for marine current turbine applications

被引:16
作者
Pham, Huu-Tam [1 ]
Bourgeot, Jean-Matthieu [1 ]
Benbouzid, Mohamed [2 ,3 ]
机构
[1] Ecole Natl Ingn Brest, FRE CNRS IRDL 3744, F-29280 Plouzane, France
[2] Univ Brest, FRE CNRS IRDL 3744, F-29238 Brest, France
[3] Shanghai Maritime Univ, Shanghai, Peoples R China
关键词
fault tolerant control; predictive control; hydraulic turbines; permanent magnet generators; synchronous generators; fault-tolerant finite control set-model; marine current turbine applications; marine current energy conversion system; five-phase permanent magnet synchronous generator; swell effect; open-circuit fault conditions; reference currents; reference torque; copper losses; Raz-de-Sein site; Bretagne; France; FTC strategy; SPEED CONTROL; GENERATOR; SYSTEMS;
D O I
10.1049/iet-rpg.2017.0431
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study deals with a fault-tolerant control (FTC) strategy for a marine current energy conversion system based on a five-phase permanent magnet synchronous generator. First, a finite control set-model predictive control is adopted to highlight the advantages of this kind of generator in normal mode. The speed tracking performance is evaluated when the system operates under swell effect. Second, its fault tolerance is evaluated under various open-circuit fault conditions. In this case, the reference currents are reconfigured online to achieve the reference torque while minimising the copper losses. Extensive simulations, based on real-tidal speed data measured at the Raz-de-Sein site in Bretagne, France, are carried out for the validation of the proposed FTC strategy.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
[31]   Finite Control Set-Model Predictive Control of a Flying Capacitor Multilevel Chopper Using Petri Nets [J].
Salinas, Fernando ;
Gonzalez, Mario A. ;
Escalante, Miguel F. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (09) :5891-5899
[32]   Simplified Finite Control Set-Model Predictive Control for Matrix Converter-Fed PMSM Drives [J].
Siami, Mohsen ;
Khaburi, Davood Arab ;
Rodriguez, Jose .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (03) :2438-2446
[33]   Cascaded Robust Fault-Tolerant Predictive Control for PMSM Drives [J].
Hu, Fang ;
Luo, Derong ;
Luo, Chengwei ;
Long, Zhuo ;
Wu, Gongping .
ENERGIES, 2018, 11 (11)
[34]   Predictive actuator fault-tolerant control under ellipsoidal bounding [J].
Witczak, Marcin ;
Buciakowski, Mariusz ;
Aubrun, Christophe .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2016, 30 (02) :375-392
[35]   Nonlinear Fault-tolerant Model Predictive Control Strategy for Industrial Processes [J].
Bernardi, Emanuel ;
Adam, Eduardo J. .
2020 ARGENTINE CONFERENCE ON AUTOMATIC CONTROL (AADECA), 2020,
[36]   Fault-Tolerant Economic Model Predictive Control Using Empirical Models [J].
Alanqar, Anas ;
Durand, Helen ;
Christofides, Panagiotis D. .
IFAC PAPERSONLINE, 2017, 50 (01) :3517-3523
[37]   Fault-tolerant model predictive control of a de-manufacturing plant [J].
Cataldo, A. ;
Morescalchi, M. ;
Scattolini, R. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 104 (9-12) :4803-4812
[38]   Fault-tolerant model predictive control of a de-manufacturing plant [J].
A. Cataldo ;
M. Morescalchi ;
R. Scattolini .
The International Journal of Advanced Manufacturing Technology, 2019, 104 :4803-4812
[39]   A continuous-time fault-tolerant predictive control approach for wind turbines [J].
El Houti, Rime ;
Sefriti, Selma ;
Boumhidi, Ismail .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 42 (02) :163-170
[40]   Fault-Tolerant Predictive Control for Hypersonic Vehicle in Reentry Phase based on SMDO [J].
Meng, Yizhen ;
Jiang, Bin ;
Qi, Ruiyun ;
Liu, Jianwei .
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, :6449-6454