Deep Learning Assisted On-chip Fourier Transform Spectrometer

被引:2
作者
Xia, Lipeng [1 ,2 ,3 ]
Zhang, Aoxue [1 ,2 ,3 ]
Li, Ting [1 ,2 ,3 ]
Zou, Yi [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIV | 2020年 / 11283卷
基金
中国国家自然科学基金;
关键词
Silicon Photonics; Fourier Transform Spectrometer; Deep learning; SOI;
D O I
10.1117/12.2546428
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We proposed and demonstrated a deep learning assisted on-chip Fourier transform spectroscopy (FTS), using an artificial neural networks (ANN) to analyze the output stationary interferogram. It is found that, compared with the conventional FTS, the resolution could be improved without increasing the maximum path length difference and the number of MZIs, thus reducing the burden of adding more power budget. This new concept of enhancing spectral resolution may hold great promise for potential applications in integrated FTS.
引用
收藏
页数:9
相关论文
共 11 条
  • [1] Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers
    Florjanczyk, Miroslaw
    Cheben, Pavel
    Janz, Siegfried
    Scott, Alan
    Solheim, Brian
    Xu, Dan-Xia
    [J]. OPTICS EXPRESS, 2007, 15 (26) : 18176 - 18189
  • [2] On-chip Fourier transform spectrometer on silicon-on-sapphire
    Heidari, Elham
    Xu, Xiaochuan
    Chung, Chi-Jui
    Chen, Ray T.
    [J]. OPTICS LETTERS, 2019, 44 (11) : 2883 - 2886
  • [3] Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers
    Herrero-Bermello, Alaine
    Velasco, Aitor V.
    Podmore, Hugh
    Cheben, Pavel
    Schmid, Jens H.
    Janz, Siegfried
    Calvo, Maria L.
    Xu, Dan-Xia
    Scott, Alan
    Corredera, Pedro
    [J]. OPTICS LETTERS, 2017, 42 (11) : 2239 - 2242
  • [4] High-performance and scalable on-chip digital Fourier transform spectroscopy
    Kita, Derek M.
    Miranda, Brando
    Favela, David
    Bono, David
    Michon, Jerome
    Lin, Hongtao
    Gu, Tian
    Hu, Juejun
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [5] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [6] Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip
    Nedeljkovic, Milos
    Velasco, Aitor V.
    Khokhar, Ali Z.
    Delage, Andre
    Cheben, Pavel
    Mashanovich, Goran Z.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (04) : 528 - 531
  • [7] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  • [8] Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer
    Podmore, Hugh
    Scott, Alan
    Cheben, Pavel
    Velasco, Aitor V.
    Schmid, Jens H.
    Vachon, Martin
    Lee, Regina
    [J]. OPTICS LETTERS, 2017, 42 (07) : 1440 - 1443
  • [9] Smith B.C., 2011, FUNDAMENTALS FOURIER
  • [10] High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides
    Velasco, Aitor V.
    Cheben, Pavel
    Bock, Przemek J.
    Delage, Andre
    Schmid, Jens H.
    Lapointe, Jean
    Janz, Siegfried
    Calvo, Maria L.
    Xu, Dan-Xia
    Florjanczyk, Miroslaw
    Vachon, Martin
    [J]. OPTICS LETTERS, 2013, 38 (05) : 706 - 708