New results for robustness analysis on Markov jump linear system

被引:0
作者
Chen, Hao [1 ]
机构
[1] Southwest Minzu Univ, Coll Elect & Informat Engn, Chengdu 610041, Sichuan, Peoples R China
来源
2017 CHINESE AUTOMATION CONGRESS (CAC) | 2017年
关键词
Convex combination; Geometric sequence; Markov jump; Parameter uncertainties; SWITCHED NEURAL-NETWORKS; TIME-VARYING DELAY; H-INFINITY; STABILITY ANALYSIS; NEUTRAL-TYPE; SYNCHRONIZATION; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the stability results of a Markov jump linear system with parameter uncertainties and time-varying delay. A geometric sequence based method is used for delay-partitioning. Then, a modified geometric sequence division (GSD) dependent augmented Lyapunov-Krasovskii functional (LKF) is constructed with respect to the state variables forming in geometric progression. By employing the convex combination method, the parameter uncertainties is handled. Then, the delay derivative. h (t) is flexibly represented to avoid unnecessary enlargement of the estimation of the LKF derivative. Numerical example shows that this design provides expected results.
引用
收藏
页码:1578 / 1583
页数:6
相关论文
共 24 条
[1]   Robust finite-time H∞ control for a class of uncertain switched neural networks of neutral-type with distributed time varying delays [J].
Ali, M. Syed ;
Saravanan, S. .
NEUROCOMPUTING, 2016, 177 :454-468
[2]  
[Anonymous], 2001, PERSPECTIVES ROBUST
[3]   Discrete-time H-/H∞ sensor fault detection observer design for nonlinear systems with parameter uncertainty [J].
Aouaouda, S. ;
Chadli, M. ;
Shi, P. ;
Karimi, H. R. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (03) :339-361
[4]  
Boukas E. K., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P4125, DOI 10.1109/CDC.1999.828008
[5]   Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach [J].
Chandrasekar, A. ;
Rakkiyappan, R. ;
Cao, Jinde .
NEURAL NETWORKS, 2015, 70 :27-38
[6]   Stability of nonlinear time-delay systems satisfying a quadratic constraint [J].
Ekramian, Mohsen ;
Ataei, Mohammad ;
Talebi, Soroush .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (03) :712-718
[7]   Delay-induced stability of vector second-order systems via simple Lyapunov functionals [J].
Fridman, Emilia ;
Shaikhet, Leonid .
AUTOMATICA, 2016, 74 :288-296
[8]   Non-fragile H∞ output feedback control design for continuous-time fuzzy systems [J].
Kchaou, Mourad ;
El Hajjaji, Ahmed ;
Toumi, Ahmed .
ISA TRANSACTIONS, 2015, 54 :3-14
[9]   A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays [J].
Lakshmanan, S. ;
Park, Ju H. ;
Jung, H. Y. ;
Kwon, O. M. ;
Rakkiyappan, R. .
NEUROCOMPUTING, 2013, 111 :81-89
[10]  
Liu X., INT J ROBUST NONLINE