lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

被引:0
作者
Taylor, Benjamin M. [1 ]
Davies, Tilman M. [2 ]
Rowlingson, Barry [1 ]
Diggle, Peter J. [1 ]
机构
[1] Univ Lancaster, Fac Hlth & Med, Lancaster LA1 4YF, England
[2] Univ Otago, Dept Math & Stat, Dunedin 9054, New Zealand
来源
JOURNAL OF STATISTICAL SOFTWARE | 2013年 / 52卷 / 04期
关键词
Cox process; R; spatio-temporal point process;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces an R package for spatial and spatio-temporal prediction and forecasting for log-Gaussian Cox processes. The main computational tool for these models is Markov chain Monte Carlo (MCMC) and the new package, lgcp, therefore also provides an extensible suite of functions for implementing MCMC algorithms for processes of this type. The modelling framework and details of inferential procedures are first presented before a tour of lgcp functionality is given via a walk-through data-analysis. Topics covered include reading in and converting data, estimation of the key components and parameters of the model, specifying output and simulation quantities, computation of Monte Carlo expectations, post-processing and simulation of data sets.
引用
收藏
页数:40
相关论文
共 34 条
[1]   A tutorial on adaptive MCMC [J].
Andrieu, Christophe ;
Thoms, Johannes .
STATISTICS AND COMPUTING, 2008, 18 (04) :343-373
[2]  
[Anonymous], 2012, R LANG ENV STAT COMP
[3]   spatstat: An R package for analyzing spatial point patterns [J].
Baddeley, A ;
Turner, R .
JOURNAL OF STATISTICAL SOFTWARE, 2005, 12 (06) :1-42
[4]   Non- and semi-parametric estimation of interaction in inhomogeneous point patterns [J].
Baddeley, AJ ;
Moller, J ;
Waagepetersen, R .
STATISTICA NEERLANDICA, 2000, 54 (03) :329-350
[5]  
Bivand RS, 2008, USE R, P1
[6]  
Bowman A., 2007, Journal of Statistical Software, V17, P1
[7]  
Bowman AW, 2010, J STAT SOFTW, V36, P1
[8]   Spatiotemporal prediction for log-Gaussian Cox processes [J].
Brix, A ;
Diggle, PJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :823-841
[9]  
Davies T, 2013, ASSESSING MINI UNPUB
[10]  
Davies TM, 2011, J STAT SOFTW, V39, P1