Twin SVM with a reject option through ROC curve

被引:10
|
作者
Lin, Dongyun [1 ]
Sun, Lei [2 ]
Toh, Kar-Ann [3 ]
Zhang, Jing Bo [4 ]
Lin, Zhiping [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[4] Nanyang Technol Univ, Nanyang Environm & Water Res Inst, 1 Cleantech Loop, Singapore 637141, Singapore
关键词
SUPPORT VECTOR MACHINES; CLASSIFICATION; CLASSIFIERS; ERROR; COST;
D O I
10.1016/j.jfranklin.2017.05.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new method which embeds a reject option in twin support vector machine (RO-TWSVM) through the Receiver Operating Characteristic (ROC) curve for binary classification. The proposed RO-TWSVM enhances the classification robustness through inclusion of an effective rejection rule for potentially misclassified samples. The method is formulated based on a cost-sensitive framework which follows the principle of minimization of the expected cost of classification. Extensive experiments are conducted on synthetic and real-world data sets to compare the proposed RO-TWSVM with the original TWSVM without a reject option (TWSVM-without-RO) and the existing SVM with a reject option (RO-SVM). The experimental results demonstrate that our RO-TWSVM significantly outperforms TWSVM-without-RO, and in general, performs better than RO-SVM. (c) 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1710 / 1732
页数:23
相关论文
共 50 条
  • [21] Optimal Strategies for Reject Option Classifiers
    Franc, Vojtech
    Prusa, Daniel
    Voracek, Vaclav
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [22] Lasso type classifiers with a reject option
    Wegkamp, Marten
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 155 - 168
  • [23] EFFECT OF REJECT OPTION ON CLASSIFIER PERFORMANCE
    Dreiseitl, S.
    Osl, M.
    23RD EUROPEAN MODELING & SIMULATION SYMPOSIUM, EMSS 2011, 2011, : 176 - 180
  • [24] Machine learning with a reject option: a survey
    Kilian Hendrickx
    Lorenzo Perini
    Dries Van der Plas
    Wannes Meert
    Jesse Davis
    Machine Learning, 2024, 113 : 3073 - 3110
  • [25] Probability of default estimation, with a reject option
    Coenen, Lize
    Abdullah, Ahmed K. A.
    Guns, Tias
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 439 - 448
  • [26] Machine learning with a reject option: a survey
    Hendrickx, Kilian
    Perini, Lorenzo
    van der Plas, Dries
    Meert, Wannes
    Davis, Jesse
    MACHINE LEARNING, 2024, 113 (05) : 3073 - 3110
  • [27] Naturally constrained reject option classification
    Kashani Motlagh, Nicholas
    Davis, Jim
    Anderson, Tim
    Gwinnup, Jeremy
    MACHINE VISION AND APPLICATIONS, 2025, 36 (01)
  • [28] Speech Emotion Recognition with a Reject Option
    Sridhar, Kusha
    Busso, Carlos
    INTERSPEECH 2019, 2019, : 3272 - 3276
  • [29] On-line Learning With Reject Option
    Perez, G. J.
    Santibanez, M.
    Valdovinos, R. M.
    Marcial, J. R.
    Romero, M.
    Alejo, R.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (01) : 279 - 286
  • [30] Interpretable machine learning with reject option
    Brinkrolf, Johannes
    Hammer, Barbara
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (04) : 283 - 290