POSITIVE SOLUTIONS TO A DIRICHLET PROBLEM WITH p-LAPLACIAN AND CONCAVE-CONVEX NONLINEARITY DEPENDING ON A PARAMETER

被引:51
作者
Marano, Salvatore A. [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
Concave-convex nonlinearities; p-Laplacian; positive solutions; QUASILINEAR ELLIPTIC-EQUATIONS; AMBROSETTI; MULTIPLICITY; EXPONENTS; SOBOLEV;
D O I
10.3934/cpaa.2013.12.815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear elliptic equation with p-Laplacian, concave-convex reaction term depending on a parameter lambda > 0, and homogeneous boundary condition, is investigated. A bifurcation result, which describes the set of positive solutions as lambda varies, is obtained through variational methods combined with truncation and comparison techniques.
引用
收藏
页码:815 / 829
页数:15
相关论文
共 18 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
[Anonymous], 2008, MEM AM MATH SOC
[3]   The Ambrosetti-Prodi problem for the p-laplace operator [J].
Arcoya, David ;
Ruiz, David .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (06) :849-865
[4]   Multiple solutions for a Dirichlet problem with p-Laplacian and set valued nonlinearity [J].
Averna, D. ;
Marano, S. A. ;
Motreanu, D. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (02) :285-303
[5]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[6]   A DIRICHLET PROBLEM INVOLVING CRITICAL EXPONENTS [J].
BOCCARDO, L ;
ESCOBEDO, M ;
PERAL, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1639-1648
[7]   Infinitely many solutions for a Dirichlet problem involving the p-Laplacian [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :737-752
[8]  
GASINSKI L, 2006, SER MATH ANAL APPL, V9
[9]  
Gasinski L., 2005, SER MATH ANAL APPL, V8
[10]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902