Digital Twin Assisted Task Offloading for Aerial Edge Computing and Networks

被引:104
作者
Li, Bin [1 ,2 ]
Liu, Yufeng [1 ]
Tan, Ling [1 ]
Pan, Heng [3 ,4 ]
Zhang, Yan [5 ,6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[3] Zhongyuan Univ Technol, Zhengzhou 450007, Peoples R China
[4] Henan Int Joint Lab Blockchain Data Sharing, Zhengzhou 450007, Peoples R China
[5] Univ Oslo, N-0315 Oslo, Norway
[6] Simula Metropolitan Ctr Digital Engn, N-0167 Oslo, Norway
基金
中国国家自然科学基金;
关键词
Task analysis; Autonomous aerial vehicles; Energy consumption; Digital twins; Trajectory; Servers; Resource management; Digital twin; unmanned aerial vehicle; mobile edge computing; user mobility; deep reinforcement learning; RESOURCE-ALLOCATION; COST; OPTIMIZATION;
D O I
10.1109/TVT.2022.3182647
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considering the user mobility and unpredictable mobile edge computing (MEC) environments, this paper studies the intelligent task offloading problem in unmanned aerial vehicle (UAV)-enabled MEC with the assistance of digital twin (DT). We aim at minimizing the energy consumption of the entire MEC system by jointly optimizing mobile terminal users (MTUs) association, UAV trajectory, transmission power distribution and computation capacity allocation while respecting the constraints of mission maximum processing delays. Specifically, double deep Q-network (DDQN) algorithm stemming from deep reinforcement learning is first proposed to effectively solve the problem of MTUs association and UAV trajectory. Then, the closed-form expression is employed to handle the problem of transmission power distribution and the computation capacity allocation problem is further addressed via an iterative algorithm. Numerical results show that our proposed scheme is able to converge and significantly reduce the total energy consumption of the MEC system compared to the benchmark schemes.
引用
收藏
页码:10863 / 10877
页数:15
相关论文
共 39 条
[1]   Data Offloading in UAV-Assisted Multi-Access Edge Computing Systems Under Resource Uncertainty [J].
Apostolopoulos, Pavlos Athanasios ;
Fragkos, Georgios ;
Tsiropoulou, Eirini Eleni ;
Papavassiliou, Symeon .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (01) :175-190
[2]   Task Execution Cost Minimization-Based Joint Computation Offloading and Resource Allocation for Cellular D2D MEC Systems [J].
Chai, Rong ;
Lin, Junliang ;
Chen, Minglong ;
Chen, Qianbin .
IEEE SYSTEMS JOURNAL, 2019, 13 (04) :4110-4121
[3]  
Chen X., 2020, P IEEE 91 VEH TECHN, P1
[4]   Edge Intelligence-Based Ultra-Reliable and Low-Latency Communications for Digital Twin-Enabled Metaverse [J].
Dang Van Huynh ;
Khosravirad, Saeed R. ;
Masaracchia, Antonino ;
Dobre, Octavia A. ;
Duong, Trung Q. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (08) :1733-1737
[5]   Multi-UAV-Assisted MEC System: Joint Association and Resource Management Framework [J].
Ei, Nway Nway ;
Kang, Seok Won ;
Alsenwi, Madyan ;
Tun, Yan Kyaw ;
Hong, Choong Seon .
35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, :213-218
[6]   UAV-Aided Ultra-Reliable Low-Latency Computation Offloading in Future IoT Networks [J].
El Haber, Elie ;
Alameddine, Hyame Assem ;
Assi, Chadi ;
Sharafeddine, Sanaa .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) :6838-6851
[7]   Online Learning Based Computation Offloading in MEC Systems With Communication and Computation Dynamics [J].
Guo, Kun ;
Gao, Ruifeng ;
Xia, Wenchao ;
Quek, Tony Q. S. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (02) :1147-1162
[8]   D2D Communications Meet Mobile Edge Computing for Enhanced Computation Capacity in Cellular Networks [J].
He, Yinghui ;
Ren, Jinke ;
Yu, Guanding ;
Cai, Yunlong .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (03) :1750-1763
[9]   Mobility-Aware Offloading and Resource Allocation in a MEC-Enabled IoT Network With Energy Harvesting [J].
Hu, Han ;
Wang, Qun ;
Hu, Rose Qingyang ;
Zhu, Hongbo .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (24) :17541-17556
[10]   Multi-Agent Deep Reinforcement Learning for Computation Offloading and Interference Coordination in Small Cell Networks [J].
Huang, Xiaoyan ;
Leng, Supeng ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) :9282-9293