Plasmonic mass and Johnson-Nyquist noise

被引:2
作者
Chee, Jingyee [1 ]
Yoon, Hosang [1 ]
Qin, Ling [1 ]
Ham, Donhee [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
plasmonics; noise; graphene; fluctuation dissipation theorem; linear response; kinetic inductance; plasmonic mass; GRAPHENE PLASMONICS; THERMAL AGITATION; DIRAC FERMIONS; CONDUCTORS;
D O I
10.1088/0957-4484/26/35/354002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The fluctuation-dissipation theorem relates the thermal noise spectrum of a conductor to its linear response properties, with the ohmic resistance arising from the electron scattering being the most notable linear response property. But the linear response also includes the collective inertial acceleration of electrons, which should in principle influence the thermal noise spectrum as well. In practice, this effect would be largely masked by the Planck quantization for traditional conductors with short electron scattering times. But recent advances in nanotechnology have enabled the fabrication of conductors with greatly increased electron scattering times, with which the collective inertial effect can critically affect the thermal noise spectrum. In this paper we highlight this collective inertial effect-that is, the plasmonic effect-on the thermal noise spectrum under the framework of semiclassical electron dynamics, from both fundamental microscopic and practical modeling points of view. In graphene, where non-zero collective inertia arises from zero single-electron effective mass and where both electron and hole bands exist together, the thermal noise spectrum shows rich temperature and frequency dependencies, unseen in traditional conductors.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets [J].
Abedinpour, Saeed H. ;
Vignale, G. ;
Principi, A. ;
Polini, Marco ;
Tse, Wang-Kong ;
MacDonald, A. H. .
PHYSICAL REVIEW B, 2011, 84 (04)
[2]   Ultra-Subwavelength Two-Dimensional Plasmonic Circuits [J].
Andress, William F. ;
Yoon, Hosang ;
Yeung, Kitty Y. M. ;
Qin, Ling ;
West, Ken ;
Pfeiffer, Loren ;
Ham, Donhee .
NANO LETTERS, 2012, 12 (05) :2272-2277
[3]  
Ariel V., 2013, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), P696, DOI 10.1109/ICEAA.2013.6632334
[4]  
Ashcroft NW., 1976, SOLID STATE PHYS
[5]   IRREVERSIBILITY AND GENERALIZED NOISE [J].
CALLEN, HB ;
WELTON, TA .
PHYSICAL REVIEW, 1951, 83 (01) :34-40
[6]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[7]   SELF-CONSISTENT FIELD APPROACH TO THE MANY-ELECTRON PROBLEM [J].
EHRENREICH, H ;
COHEN, MH .
PHYSICAL REVIEW, 1959, 115 (04) :786-790
[8]  
Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/NPHOTON.2012.262, 10.1038/nphoton.2012.262]
[9]   Thermal agitation of electricity in conductors [J].
Johnson, JB .
PHYSICAL REVIEW, 1928, 32 (01) :97-109
[10]  
Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]