Automatic classification of mammography reports by BI-RADS breast tissue composition class

被引:44
作者
Percha, Bethany
Nassif, Houssam [2 ,3 ]
Lipson, Jafi [4 ]
Burnside, Elizabeth [2 ,5 ]
Rubin, Daniel [1 ,4 ]
机构
[1] Stanford Univ, Richard M Lucas Ctr P285, Biomed Informat Program, Stanford, CA 94305 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
[3] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[4] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[5] Univ Wisconsin, Dept Radiol, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
REPLACEMENT THERAPY USE; RISK-FACTOR; FAMILY-HISTORY; DENSITY; CANCER; SYSTEM; WOMEN;
D O I
10.1136/amiajnl-2011-000607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because breast tissue composition partially predicts breast cancer risk, classification of mammography reports by breast tissue composition is important from both a scientific and clinical perspective. A method is presented for using the unstructured text of mammography reports to classify them into BI-RADS breast tissue composition categories. An algorithm that uses regular expressions to automatically determine BI-RADS breast tissue composition classes for unstructured mammography reports was developed. The algorithm assigns each report to a single BI-RADS composition class: 'fatty', 'fibroglandular', 'heterogeneously dense', 'dense', or 'unspecified'. We evaluated its performance on mammography reports from two different institutions. The method achieves >99% classification accuracy on a test set of reports from the Marshfield Clinic (Wisconsin) and Stanford University. Since large-scale studies of breast cancer rely heavily on breast tissue composition information, this method could facilitate this research by helping mine large datasets to correlate breast composition with other covariates.
引用
收藏
页码:913 / 916
页数:4
相关论文
共 30 条
[1]  
[Anonymous], 2003, BREAST IM REP DAT SY
[2]  
APOSTOLOVA E, 2009, EMBC 2009 ANN INT C, P5905
[3]   Mammographic breast density as an intermediate phenotype for breast cancer [J].
Boyd, NF ;
Rommens, JM ;
Vogt, K ;
Lee, V ;
Hopper, JL ;
Yaffe, MJ ;
Paterson, AD .
LANCET ONCOLOGY, 2005, 6 (10) :798-808
[4]   Heritability of mammographic density, a risk factor for breast cancer [J].
Boyd, NF ;
Dite, GS ;
Stone, J ;
Gunasekara, A ;
English, DR ;
McCredie, MRE ;
Giles, GG ;
Tritchler, D ;
Chiarelli, A ;
Yaffe, MJ ;
Hopper, JL .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (12) :886-894
[5]   Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study [J].
Boyd, Norman ;
Martin, Lisa ;
Chavez, Sofia ;
Gunasekara, Anoma ;
Salleh, Ayesha ;
Melnichouk, Olga ;
Yaffe, Martin ;
Friedenreich, Christine ;
Minkin, Salomon ;
Bronskill, Michael .
LANCET ONCOLOGY, 2009, 10 (06) :569-580
[6]   Breast Tissue Composition and Susceptibility to Breast Cancer [J].
Boyd, Norman F. ;
Martin, Lisa J. ;
Bronskill, Michael ;
Yaffe, Martin J. ;
Duric, Neb ;
Minkin, Salomon .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2010, 102 (16) :1224-1237
[7]  
Boyd Norman F., 2009, V472, P343, DOI 10.1007/978-1-60327-492-0_15
[8]  
Carney PA, 2003, ANN INTERN MED, V138, P168, DOI 10.7326/0003-4819-138-3-200302040-00008
[9]   Influence of patterns of hormone replacement therapy use and mammographic density on breast cancer detection [J].
Chiarelli, Anna M. ;
Kirsh, Victoria A. ;
Klar, Neil S. ;
Shumak, Rene ;
Jong, Roberta ;
Fishell, Eve ;
Yaffe, Martin J. ;
Boyd, Norman F. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2006, 15 (10) :1856-1862
[10]   Informatics in Radiology RADTF: A Semantic Search-enabled, Natural Language Processor-generated Radiology Teaching File [J].
Do, Bao H. ;
Wu, Andrew ;
Biswal, Sandip ;
Kamaya, Aya ;
Rubin, Daniel L. .
RADIOGRAPHICS, 2010, 30 (07) :2039-2048