Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation

被引:31
作者
Kireeva, I. V. [1 ]
Chumlyakov, Yu. I. [1 ]
Pobedennaya, Z. V. [1 ]
Vyrodova, A. V. [1 ]
Karaman, I. [2 ]
机构
[1] Natl Res Tomsk State Univ, Siberian Phys Tech Inst VD Kuznetsova, Novosobornaya Sq 1, Tomsk 634050, Russia
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 713卷
基金
俄罗斯科学基金会;
关键词
CoCrFeMnNi; High-entropy alloy; Single crystals; Tensile strain; Extrinsic stacking fault; Deformation twinning; STACKING-FAULT-ENERGY; MECHANICAL-PROPERTIES; SLIP; TEMPERATURE; DISLOCATION; NUCLEATION; DEPENDENCE; BEHAVIOR; STRESS; STEEL;
D O I
10.1016/j.msea.2017.12.059
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents research about the tensile deformation behaviour and deformation mechanisms (slip and twinning) in single crystals of the equiatomic Co20Cr20Fe20Mn20Ni20 (at%) high-entropy alloy (HEA) oriented along the [001] direction in the temperature range T = 77-573 K. Classical studies on single crystals of pure metals and their substitution alloys with the face-centered cubic (FCC) structure, with a low stacking fault energy, have shown that deformation twinning in single crystals oriented along the [001] direction does not develop at tensile deformation. In the present paper, extrinsic stacking faults and deformation twinning in the [001]-oriented single crystals of the equiatomic Co20Cr20Fe20Mn20Ni20 HEA were detected under tensile loading at the temperature of liquid nitrogen after a strain of 5%. The critical resolved shear stress for twinning was determined as tau(tw)(cr) = 210 +/- 10 MPa. Deformation twinning in the [001]-oriented single crystals leads to an increase in the strain hardening coefficient in comparison with the slip deformation in these crystals at T > 77 K.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 55 条
[1]  
Berner R, 1969, Plastishe Verformung von Eikristallen, P272
[2]   On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J].
Byun, TS .
ACTA MATERIALIA, 2003, 51 (11) :3063-3071
[3]   Evidencing extrinsic stacking faults in twinning-induced plasticity steel [J].
Casillas, Gilberto ;
Gazder, Azdiar A. ;
Pereloma, Elena V. ;
Saleh, Ahmed A. .
MATERIALS CHARACTERIZATION, 2017, 123 :275-281
[4]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[5]   A DISLOCATION MODEL FOR TWINNING IN F.C.C. METALS [J].
COHEN, JB ;
WEERTMAN, J .
ACTA METALLURGICA, 1963, 11 (08) :996-&
[6]   DEPENDENCE OF WIDTH OF A DISSOCIATED DISLOCATION ON DISLOCATION VELOCITY [J].
COPLEY, SM ;
KEAR, BH .
ACTA METALLURGICA, 1968, 16 (02) :227-&
[7]   Twinning-induced plasticity (TWIP) steels [J].
De Cooman, Bruno C. ;
Estrin, Yuri ;
Kim, Sung Kyu .
ACTA MATERIALIA, 2018, 142 :283-362
[8]   FORMATION MECHANISM OF MECHANICAL TWINS IN FCC METALS [J].
FUJITA, H ;
MORI, T .
SCRIPTA METALLURGICA, 1975, 9 (06) :631-636
[9]   On the feasibility of twinning nucleation via extrinsic faulting in twinning-induced plasticity steel [J].
Gazder, Azdiar A. ;
Saleh, Ahmed A. ;
Pereloma, Elena V. .
SCRIPTA MATERIALIA, 2013, 68 (06) :436-439
[10]   ON THE ORIGIN OF PLANAR SLIP IN FCC ALLOYS [J].
GEROLD, V ;
KARNTHALER, HP .
ACTA METALLURGICA, 1989, 37 (08) :2177-2183