High order moment closure for Vlasov-Maxwell equations
被引:4
作者:
Di, Yana
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
Di, Yana
[1
,2
,3
]
Kou, Zhenzhong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
Kou, Zhenzhong
[3
]
Li, Ruo
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, LMAM, HEDPS & CAPT, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaChinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
Li, Ruo
[4
,5
]
机构:
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Peking Univ, LMAM, HEDPS & CAPT, Beijing 100871, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
The extended magnetohydrodynamic models are derived based on the moment closure of the Vlasov-Maxwell (VM) equations. We adopt the Grad type moment expansion which was firstly proposed for the Boltzmann equation. A new regularization method for the Grad's moment system was recently proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. For the VM equations, the moment expansion of the convection term is exactly the same as that in the Boltzmann equation, thus the new developed regularization applies. The moment expansion of the electromagnetic force term in the VM equations turns out to be a linear source term, which can preserve the conservative properties of the distribution function in the VM equations perfectly.
机构:
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United StatesPlasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States
Davidson, Ronald C.
Qin, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United StatesPlasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States
Qin, Hong
Channell, Paul J.
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos National Laboratory, Los Alamos, NM 87545, United StatesPlasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States
Channell, Paul J.
Physics Letters, Section A: General, Atomic and Solid State Physics,
1999,
258
(4-6):
: 297
-
304
机构:
Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
Univ Paris 07, Lab JL Lions, F-75252 Paris 05, FranceEcole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
机构:
Univ Franche Comte, Lab Math Besancon, CNRS, UMR 6623, F-25030 Besancon, FranceUniv Franche Comte, Lab Math Besancon, CNRS, UMR 6623, F-25030 Besancon, France
机构:
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United StatesPlasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States
Davidson, Ronald C.
Qin, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United StatesPlasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States
Qin, Hong
Channell, Paul J.
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos National Laboratory, Los Alamos, NM 87545, United StatesPlasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States
Channell, Paul J.
Physics Letters, Section A: General, Atomic and Solid State Physics,
1999,
258
(4-6):
: 297
-
304
机构:
Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
Univ Paris 07, Lab JL Lions, F-75252 Paris 05, FranceEcole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
机构:
Univ Franche Comte, Lab Math Besancon, CNRS, UMR 6623, F-25030 Besancon, FranceUniv Franche Comte, Lab Math Besancon, CNRS, UMR 6623, F-25030 Besancon, France