High order moment closure for Vlasov-Maxwell equations

被引:4
作者
Di, Yana [1 ,2 ,3 ]
Kou, Zhenzhong [3 ]
Li, Ruo [4 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Peking Univ, LMAM, HEDPS & CAPT, Beijing 100871, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Moment closure; Vlasov-Maxwell (VM) equations; Boltzmann equation; extended magnetohydrodynamics; REGULARIZATION; SYSTEM; NUMBER; SCHEME;
D O I
10.1007/s11464-015-0463-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extended magnetohydrodynamic models are derived based on the moment closure of the Vlasov-Maxwell (VM) equations. We adopt the Grad type moment expansion which was firstly proposed for the Boltzmann equation. A new regularization method for the Grad's moment system was recently proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. For the VM equations, the moment expansion of the convection term is exactly the same as that in the Boltzmann equation, thus the new developed regularization applies. The moment expansion of the electromagnetic force term in the VM equations turns out to be a linear source term, which can preserve the conservative properties of the distribution function in the VM equations perfectly.
引用
收藏
页码:1087 / 1100
页数:14
相关论文
共 50 条
  • [11] Periodically-focused solutions to the nonlinear Vlasov-Maxwell equations for intense charged particle beams
    Davidson, Ronald C.
    Qin, Hong
    Channell, Paul J.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (4-6): : 297 - 304
  • [12] The Mean-Field Limit for a Regularized Vlasov-Maxwell Dynamics
    Golse, Francois
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 310 (03) : 789 - 816
  • [13] Invariant solutions of integro-differential Vlasov-Maxwell equations in Lagrangian variables by Lie group analysis
    Rezvan, Farshad
    Ozer, Teoman
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) : 3412 - 3437
  • [14] An asymptotic-preserving and energy-conserving particle-in-cell method for Vlasov-Maxwell equations
    Ji, Lijie
    Yang, Zhiguo
    Li, Zhuoning
    Wu, Dong
    Jin, Shi
    Xu, Zhenli
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (06)
  • [15] Analysis of a Particle Method for the One-Dimensional Vlasov-Maxwell System
    Bostan, Mihai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 757 - 782
  • [16] Parallel implementation of a relativistic semi-Lagrangian Vlasov-Maxwell solver
    Sarrat, Mathieu
    Ghizzo, Alain
    Del Sarto, Daniele
    Serrat, Laurent
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11)
  • [17] Lipschitz Continuous Solutions of the Vlasov-Maxwell Systems with a Conductor Boundary Condition
    Cao, Yunbai
    Kim, Chanwoo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (01) : 529 - 625
  • [18] Parallelization of a Vlasov-Maxwell solver in four-dimensional phase space
    Daldorff, L. K. S.
    Eliasson, B.
    PARALLEL COMPUTING, 2009, 35 (02) : 109 - 115
  • [19] Boundary value problem for the three dimensional time periodic Vlasov-Maxwell system
    Bostan, M
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2005, 3 (04) : 621 - 663
  • [20] Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement
    Wettervik, Benjamin Svedung
    DuBois, Timothy C.
    Siminos, Evangelos
    Fulop, Tunde
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (06)