High order moment closure for Vlasov-Maxwell equations

被引:4
|
作者
Di, Yana [1 ,2 ,3 ]
Kou, Zhenzhong [3 ]
Li, Ruo [4 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Peking Univ, LMAM, HEDPS & CAPT, Beijing 100871, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Moment closure; Vlasov-Maxwell (VM) equations; Boltzmann equation; extended magnetohydrodynamics; REGULARIZATION; SYSTEM; NUMBER; SCHEME;
D O I
10.1007/s11464-015-0463-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extended magnetohydrodynamic models are derived based on the moment closure of the Vlasov-Maxwell (VM) equations. We adopt the Grad type moment expansion which was firstly proposed for the Boltzmann equation. A new regularization method for the Grad's moment system was recently proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. For the VM equations, the moment expansion of the convection term is exactly the same as that in the Boltzmann equation, thus the new developed regularization applies. The moment expansion of the electromagnetic force term in the VM equations turns out to be a linear source term, which can preserve the conservative properties of the distribution function in the VM equations perfectly.
引用
收藏
页码:1087 / 1100
页数:14
相关论文
共 50 条
  • [1] High order moment closure for Vlasov-Maxwell equations
    Yana Di
    Zhenzhong Kou
    Ruo Li
    Frontiers of Mathematics in China, 2015, 10 : 1087 - 1100
  • [2] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [3] Hamiltonian splitting for the Vlasov-Maxwell equations
    Crouseilles, Nicolas
    Einkemmer, Lukas
    Faou, Erwan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 283 : 224 - 240
  • [4] Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations"
    Qin, Hong
    He, Yang
    Zhang, Ruili
    Liu, Jian
    Xiao, Jianyuan
    Wang, Yulei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 721 - 723
  • [5] Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov-Maxwell equations
    Galindo-Olarte, Andres
    Huang, Juntao
    Ryan, Jennifer
    Cheng, Yingda
    BIT NUMERICAL MATHEMATICS, 2023, 63 (04)
  • [6] Charge-conserving grid based methods for the Vlasov-Maxwell equations
    Crouseilles, Nicolas
    Navaro, Pierre
    Sonnendruecker, Eric
    COMPTES RENDUS MECANIQUE, 2014, 342 (10-11): : 636 - 646
  • [7] Efficient Semi-Langranian Vlasov-Maxwell Simulations of High Order Harmonic Generation from Relativistic Laser-Plasma Interations
    Lehmann, Goetz
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (03) : 583 - 602
  • [8] Hamiltonian reduction of Vlasov-Maxwell to a dark slow manifold
    Miloshevich, George
    Burby, Joshua W.
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [9] Energy conserving particle-in-cell methods for relativistic Vlasov-Maxwell equations of laser-plasma interaction
    Li, Yingzhe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [10] A low-rank projector-splitting integrator for the Vlasov-Maxwell equations with divergence correction
    Einkemmer, Lukas
    Ostermann, Alexander
    Piazzola, Chiara
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 403