Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning

被引:34
|
作者
Ponciano, Jose Miguel [1 ]
Burleigh, J. Gordon [1 ]
Braun, Edward L. [1 ]
Taper, Mark L. [1 ]
机构
[1] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
关键词
Bayesian estimation in Phylogenetics; Data Cloning; diagnostics; Maximum Likelihood; parameter estimability; Parameter Identifiability; CHAIN MONTE-CARLO; MAXIMUM-LIKELIHOOD-ESTIMATION; BAYESIAN PHYLOGENETICS; MOLECULAR EVOLUTION; SPECIES TREES; POSTERIOR DISTRIBUTIONS; SUBSTITUTION MODELS; MITOCHONDRIAL-DNA; INVARIABLE SITES; MIXTURE-MODELS;
D O I
10.1093/sysbio/sys055
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The success of model-based methods in phylogenetics has motivated much research aimed at generating new, biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and sound measures of performance. To date there has been little practical guidance available as to when and why the parameters in a particular model can be identified reliably. Here, we illustrate how Data Cloning (DC), a recently developed methodology to compute the maximum likelihood estimates along with their asymptotic variance, can be used to diagnose structural parameter nonidentifiability (NI) and distinguish it from other parameter estimability problems, including when parameters are structurally identifiable, but are not estimable in a given data set (INE), and when parameters are identifiable, and estimable, but only weakly so (WE). The application of the DC theorem uses well-known and widely used Bayesian computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose nonidentifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect nonidentifiability while investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated. Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors, in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference, DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters, like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities.
引用
收藏
页码:955 / 972
页数:18
相关论文
共 50 条
  • [11] Parameter redundancy and identifiability in hidden Markov models
    Cole, Diana J.
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 105 - 118
  • [12] Parameter redundancy and identifiability in hidden Markov models
    Diana J. Cole
    METRON, 2019, 77 : 105 - 118
  • [13] Consistency and identifiability of the polymorphism-aware phylogenetic models
    Borges, Rui
    Kosiol, Carolin
    JOURNAL OF THEORETICAL BIOLOGY, 2020, 486
  • [14] Identifiability and inference of phylogenetic birth-death models
    Legried, Brandon
    Terhorst, Jonathan
    JOURNAL OF THEORETICAL BIOLOGY, 2023, 568
  • [15] The identifiability of tree topology for phylogenetic models, including covarion and mixture models
    Allman, Elizabeth S.
    Rhodes, John A.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (05) : 1101 - 1113
  • [16] Practical parameter identifiability and handling of censored data with Bayesian inference in mathematical tumour models
    Porthiyas, Jamie
    Nussey, Daniel
    Beauchemin, Catherine A. A.
    Warren, Donald C.
    Quirouette, Christian
    Wilkie, Kathleen P.
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2024, 10 (01)
  • [17] Assessing local structural identifiability for environmental models
    Stigter, J. D.
    Beck, M. B.
    Molenaar, J.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 93 : 398 - 408
  • [18] Parameter identifiability is required in pooled data methods
    Jacquez, JA
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1996, 24 (03): : 301 - 305
  • [19] Assessing parameter identifiability of activated sludge model number 1
    Afonso, Pedro
    da Conceiçao Cunha, Maria
    Journal of Environmental Engineering, 2002, 128 (08) : 748 - 754
  • [20] Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models
    Hulin Wu
    Haihong Zhu
    Hongyu Miao
    Alan S. Perelson
    Bulletin of Mathematical Biology, 2008, 70 : 785 - 799