Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning

被引:34
|
作者
Ponciano, Jose Miguel [1 ]
Burleigh, J. Gordon [1 ]
Braun, Edward L. [1 ]
Taper, Mark L. [1 ]
机构
[1] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
关键词
Bayesian estimation in Phylogenetics; Data Cloning; diagnostics; Maximum Likelihood; parameter estimability; Parameter Identifiability; CHAIN MONTE-CARLO; MAXIMUM-LIKELIHOOD-ESTIMATION; BAYESIAN PHYLOGENETICS; MOLECULAR EVOLUTION; SPECIES TREES; POSTERIOR DISTRIBUTIONS; SUBSTITUTION MODELS; MITOCHONDRIAL-DNA; INVARIABLE SITES; MIXTURE-MODELS;
D O I
10.1093/sysbio/sys055
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The success of model-based methods in phylogenetics has motivated much research aimed at generating new, biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and sound measures of performance. To date there has been little practical guidance available as to when and why the parameters in a particular model can be identified reliably. Here, we illustrate how Data Cloning (DC), a recently developed methodology to compute the maximum likelihood estimates along with their asymptotic variance, can be used to diagnose structural parameter nonidentifiability (NI) and distinguish it from other parameter estimability problems, including when parameters are structurally identifiable, but are not estimable in a given data set (INE), and when parameters are identifiable, and estimable, but only weakly so (WE). The application of the DC theorem uses well-known and widely used Bayesian computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose nonidentifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect nonidentifiability while investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated. Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors, in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference, DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters, like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities.
引用
收藏
页码:955 / 972
页数:18
相关论文
共 50 条
  • [1] Identifiability Analysis Using Data Cloning
    Sartori Junior, Jose Augusto
    Branco, Marcia D'Elia
    REVSTAT-STATISTICAL JOURNAL, 2024, 22 (01) : 87 - 110
  • [2] Assessing parameter identifiability for dynamic causal modeling of fMRI data
    Arand, Carolin
    Scheller, Elise
    Seeber, Benjamin
    Timmer, Jens
    Kloeppel, Stefan
    Schelter, Bjoern
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [3] Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models
    Roosa, Kimberlyn
    Chowell, Gerardo
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2019, 16
  • [4] Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models
    Luo, Yiqi
    Weng, Ensheng
    Wu, Xiaowen
    Gao, Chao
    Zhou, Xuhui
    Zhang, Li
    ECOLOGICAL APPLICATIONS, 2009, 19 (03) : 571 - 574
  • [5] Identifiability of Large Phylogenetic Mixture Models
    John A. Rhodes
    Seth Sullivant
    Bulletin of Mathematical Biology, 2012, 74 : 212 - 231
  • [6] Identifiability of Large Phylogenetic Mixture Models
    Rhodes, John A.
    Sullivant, Seth
    BULLETIN OF MATHEMATICAL BIOLOGY, 2012, 74 (01) : 212 - 231
  • [7] Parameter Identifiability for Nonlinear LPV Models
    Srinivasarengan, Krishnan
    Ragot, Jose
    Aubrun, Christophe
    Maquin, Didier
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (02) : 255 - 269
  • [8] Parameter Identifiability of Fundamental Pharmacodynamic Models
    Janzen, David L. I.
    Bergenholm, Linnea
    Jirstrand, Mats
    Parkinson, Joanna
    Yates, James
    Evans, Neil D.
    Chappell, Michael J.
    Frontiers in Physiology, 2016, 7
  • [9] Parameter Estimation for Thermodynamic Models Using an Identifiability Analysis and Subset Selection
    Hoffmann, Christian
    Weigert, Joris
    Esche, Erik
    Repke, Jens-Uwe
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 583 - 588
  • [10] Assessing uncertainties and identifiability of foam displacement models employing different objective functions for parameter estimation
    Valdez, Andres R.
    Rocha, Bernardo Martins
    Chapiro, Grigori
    dos Santos, Rodrigo Weber
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 214