On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System

被引:7
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Dept Math, Fac Ciencias Expt, Huelva 21071, Spain
[2] Univ Seville, Dept Appl Math 2, ES Ingenieros, Seville 41092, Spain
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2013年 / 8卷 / 02期
关键词
SILNIKOV CHAOS; CHEN CIRCUIT; EXISTENCE; ATTRACTOR;
D O I
10.1115/1.4006788
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the referenced paper, the authors use the undetermined coefficient method to analytically construct homoclinic and heteroclinic orbits in the T system. Unfortunately their method is not valid because they assume odd functions for the first component of the homoclinic and the heteroclinic orbit whereas these Shil'nikov global connections do not exhibit symmetry.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system" [J. Math. Anal. Appl. 315 (2006) 106-119] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (01) :99-101
[2]   Comment on "Heteroclinic orbits in Chen circuit with time delay" [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058-3066] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2708-2710
[3]   Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
CHAOS, 2011, 21 (04)
[4]  
Ding Y., 2010, T TIANJIN U, V16, P457
[5]   Si'lnikov homoclinic orbits in a new chaotic system [J].
Jiang, Yongxin ;
Sun, Jianhua .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :150-159
[6]   Heteroclinic orbits in Chen circuit with time delay [J].
Ren, Hai Peng ;
Li, Wen Chao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :3058-3066
[7]  
Sun F.Y., 2007, INT J PURE APPL MATH, V36, P295
[8]   Shil'nikov heteroclinic orbits in a chaotic system [J].
Sun, Feng-Yun .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (25) :4429-4436
[9]   Analysis of a 3D chaotic system [J].
Tigan, Gheorghe ;
Opris, Dumitru .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1315-1319
[10]   Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System [J].
Van Gorder, Robert A. ;
Choudhury, S. Roy .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02)