Making metals linear super-elastic with ultralow modulus and nearly zero hysteresis

被引:33
作者
Zhu, Jiaming [1 ,2 ]
Gao, Yipeng [3 ]
Wang, Dong [1 ]
Li, Ju [4 ,5 ]
Zhang, Tong-Yi [6 ]
Wang, Yunzhi [3 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Microstruct Sci, Frontier Inst Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd, Columbus, OH 43210 USA
[4] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[6] Shanghai Univ, Mat Genome Inst, 333 Nanchen Rd, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
MARTENSITIC-TRANSFORMATION; PHASE-TRANSFORMATIONS; MECHANICAL-PROPERTIES; TITANIUM-ALLOYS; MEMORY; SUPERELASTICITY; STRESS; STRAIN; CRYSTALLOGRAPHY; TRANSITION;
D O I
10.1039/c8mh01141a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate a novel materials design approach to achieve unprecedented properties by utilizing nanoscale chemo-mechanical coupling. In particular, by using computer simulations we demonstrate how to engineer ultralow modulus (12 GPa), nearly hysteresisfree, and linear super-elastic metals with a giant elastic strain limit (2.7%) by creating appropriate concentration modulations (CMs) at the nanoscale in the parent phase and by pre-straining to regulate the stress-induced martensitic transformation (MT). The nanoscale CMs created via spinodal decomposition produce corresponding phase stability modulations, suppress autocatalysis in nucleation, impose nano-confinements on growth, and hinder long-range ordering of transformation strain during the MT, which changes the otherwise sharp first-order transition into a smeared, macroscopically continuous transition over a large stress range. The pre-straining generates retained martensitic particles that are stable at the test temperature after unloading and act as operational nuclei in subsequent load cycles, eliminating the stress-strain hysteresis and offering an ultralow apparent Young's modulus. Materials with a high strength and an ultralow apparent Young's modulus have great potential for application in orthopaedic implants.
引用
收藏
页码:515 / 523
页数:9
相关论文
共 68 条
[1]   Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction [J].
Ahadi, Aslan ;
Sun, Qingping .
ACTA MATERIALIA, 2015, 90 :272-281
[2]  
[Anonymous], 1965, THEORY TRANSFORMATIO
[3]  
[Anonymous], 1977, Statistical Physics
[4]  
Bhattacharya K, 2003, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect
[5]   Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy [J].
Bigelow, G. S. ;
Garg, A. ;
Padula, S. A., II ;
Gaydosh, D. J. ;
Noebe, R. D. .
SCRIPTA MATERIALIA, 2011, 64 (08) :725-728
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films [J].
Cao, Shi-Gu ;
Li, Yunsong ;
Wu, Hong-Hui ;
Wang, Jie ;
Huang, Baoling ;
Zhang, Tong-Yi .
NANO LETTERS, 2017, 17 (08) :5148-5155
[8]   Ultralow-fatigue shape memory alloy films [J].
Chluba, Christoph ;
Ge, Wenwei ;
de Miranda, Rodrigo Lima ;
Strobel, Julian ;
Kienle, Lorenz ;
Quandt, Eckhard ;
Wuttig, Manfred .
SCIENCE, 2015, 348 (6238) :1004-1007
[9]   Classification of displacive transformations: What is a martensitic transformation? [J].
Christian, JW ;
Olson, GB ;
Cohen, M .
JOURNAL DE PHYSIQUE IV, 1995, 5 (C8) :3-10
[10]  
Collings E. W., 1983, SOURCEBOOK TITANIUM