FOUR-DIMENSIONAL GRADIENT SHRINKING SOLITONS WITH PINCHED CURVATURE

被引:0
作者
Zhang, Zhu-Hong [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Ricci flow; maximum principle; pinched Weyl tensor; POSITIVE ISOTROPIC CURVATURE; RICCI SOLITONS; CLASSIFICATION; 4-MANIFOLDS; MANIFOLDS; FLOW;
D O I
10.1090/proc/13859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any four-dimensional gradient shrinking soliton with pinched Weyl curvature (*) and satisfying c(1) <= R <= c(2) for some positive constant c(1) and c(2), will have nonnegative Ricci curvature. As a consequence, we prove that it must be a finite quotient of S-4, CP2, or S-3 x R. In particular, a compact four-dimensional gradient shrinking soliton with pinched Weyl curvature (*) must be S-4, RP4 or CP2.
引用
收藏
页码:3049 / 3056
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[2]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47
[3]   ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Xiaodong ;
Wang, Biao ;
Zhang, Zhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :269-282
[4]   Complete gradient shrinking Ricci solitons with pinched curvature [J].
Catino, Giovanni .
MATHEMATISCHE ANNALEN, 2013, 355 (02) :629-635
[5]  
Chen BL, 2006, J DIFFER GEOM, V74, P177
[6]  
Chen BL, 2012, J DIFFER GEOM, V91, P41
[7]   On Four-Dimensional Anti-self-dual Gradient Ricci Solitons [J].
Chen, Xiuxiong ;
Wang, Yuanqi .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) :1335-1343
[8]  
HAMILTON R. S., 1997, Comm. Anal. Geom., V5, P1, DOI 10.4310/CAG.1997.v5.n1.a1
[9]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153
[10]  
Hamilton RS, 1995, J DIFFER GEOM, P7