Nonpositive eigenvalues of the adjacency matrix and lower bounds for Laplacian eigenvalues

被引:2
|
作者
Charles, Zachary B. [1 ]
Farber, Miriam [2 ]
Johnson, Charles R. [3 ]
Kennedy-Shaffer, Lee [4 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Adjacency matrix; Eigenvalues; Inertia; Laplacian matrix; Ramsey numbers; GRAPHS;
D O I
10.1016/j.disc.2013.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let NPO(k) be the smallest number n such that the adjacency matrix of any undirected graph with n vertices or more has at least k nonpositive eigenvalues. We show that NPO(k) is well-defined and prove that the values of NPO(k) for k = 1, 2, 3, 4, 5 are 1, 3, 6, 10, 16 respectively. In addition, we prove that for all k >= 5, R(k, k + 1) >= NPO(k) > T-k, in which R(k, k + 1) is the Ramsey number for k and k + 1, and T-k is the kth triangular number. This implies new lower bounds for eigenvalues of Laplacian matrices: the kth largest eigenvalue is bounded from below the NPO(k)th largest degree, which generalizes some prior results. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1441 / 1451
页数:11
相关论文
共 50 条
  • [41] Lower bounds for the eigenvalues of the Dirac operator on Spinc manifolds
    Nakad, Roger
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (10) : 1634 - 1642
  • [42] Lower bounds to ground-state eigenvalues II
    Marmorino, MG
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2003, 34 (1-2) : 59 - 66
  • [43] The lower bounds of the first eigenvalues for the biharmonic operator on manifolds
    Liuwei Zhang
    Yan Zhao
    Journal of Inequalities and Applications, 2016
  • [44] Lower Bounds to Ground-State Eigenvalues II
    M.G. Marmorino
    Journal of Mathematical Chemistry, 2003, 34 : 59 - 66
  • [45] The lower bounds of the first eigenvalues for the biharmonic operator on manifolds
    Zhang, Liuwei
    Zhao, Yan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 9
  • [46] Upper bounds for the sum of Laplacian eigenvalues of a graph and Brouwer's conjecture
    Ganie, Hilal A.
    Pirzada, S.
    Ul Shaban, Rezwan
    Li, X.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [47] Line star sets for Laplacian eigenvalues
    Zhou, Jiang
    Sun, Lizhu
    Wang, Wenzhe
    Bu, Changjiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 440 : 164 - 176
  • [48] Three absolute perturbation bounds for matrix eigenvalues imply relative bounds
    Eisenstat, SC
    Ipsen, ICF
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (01) : 149 - 158
  • [49] BOUNDS FOR EIGENVALUES OF A GRAPH
    Kumar, Ravinder
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (03): : 399 - 404
  • [50] A lower bound for the Laplacian eigenvalues of a graph - Proof of a conjecture by Guo
    Brouwer, Andries E.
    Haemers, Willem H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2131 - 2135