Nonpositive eigenvalues of the adjacency matrix and lower bounds for Laplacian eigenvalues

被引:2
|
作者
Charles, Zachary B. [1 ]
Farber, Miriam [2 ]
Johnson, Charles R. [3 ]
Kennedy-Shaffer, Lee [4 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Adjacency matrix; Eigenvalues; Inertia; Laplacian matrix; Ramsey numbers; GRAPHS;
D O I
10.1016/j.disc.2013.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let NPO(k) be the smallest number n such that the adjacency matrix of any undirected graph with n vertices or more has at least k nonpositive eigenvalues. We show that NPO(k) is well-defined and prove that the values of NPO(k) for k = 1, 2, 3, 4, 5 are 1, 3, 6, 10, 16 respectively. In addition, we prove that for all k >= 5, R(k, k + 1) >= NPO(k) > T-k, in which R(k, k + 1) is the Ramsey number for k and k + 1, and T-k is the kth triangular number. This implies new lower bounds for eigenvalues of Laplacian matrices: the kth largest eigenvalue is bounded from below the NPO(k)th largest degree, which generalizes some prior results. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1441 / 1451
页数:11
相关论文
共 50 条
  • [31] Bounds on Laplacian eigenvalues related to total and signed domination of graphs
    Shi, Wei
    Kang, Liying
    Wu, Suichao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 315 - 325
  • [32] New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs
    Clemente, Gian Paolo
    Cornaro, Alessandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 403 - 413
  • [33] Bounds for the positive eigenvalues of the p-Laplacian with decaying potential
    Brown, B. M.
    Eastham, M. S. P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 734 - 744
  • [34] On the multiplicity of the adjacency eigenvalues of graphs
    Bahmani, Asghar
    Kiani, Dariush
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 477 : 1 - 20
  • [35] Bounds on Laplacian eigenvalues related to total and signed domination of graphs
    Wei Shi
    Liying Kang
    Suichao Wu
    Czechoslovak Mathematical Journal, 2010, 60 : 315 - 325
  • [36] On the Eigenvalues of General Sum-Connectivity Laplacian Matrix
    Deng H.
    Huang H.
    Zhang J.
    Journal of the Operations Research Society of China, 2013, 1 (03) : 347 - 358
  • [37] Design of orthogonal graph filter bank with known eigenvalues of Laplacian matrix
    Tseng, Chien-Cheng
    Lee, Su-Ling
    IET SIGNAL PROCESSING, 2019, 13 (05) : 551 - 561
  • [38] Bounds for Degree-Sum adjacency eigenvalues of a graph in terms of Zagreb indices
    Shinde, Sumedha S.
    Swamy, Narayan
    Gudimani, Shaila B.
    Ramane, H. S.
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2021, 29 (02) : 271 - 283
  • [39] On the Laplacian eigenvalues of a graph
    Li, JS
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 305 - 307
  • [40] Lower bounds for the eigenvalues of the Spinc Dirac operator on submanifolds
    Roger Nakad
    Julien Roth
    Archiv der Mathematik, 2015, 104 : 451 - 461