Nonpositive eigenvalues of the adjacency matrix and lower bounds for Laplacian eigenvalues

被引:2
|
作者
Charles, Zachary B. [1 ]
Farber, Miriam [2 ]
Johnson, Charles R. [3 ]
Kennedy-Shaffer, Lee [4 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Adjacency matrix; Eigenvalues; Inertia; Laplacian matrix; Ramsey numbers; GRAPHS;
D O I
10.1016/j.disc.2013.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let NPO(k) be the smallest number n such that the adjacency matrix of any undirected graph with n vertices or more has at least k nonpositive eigenvalues. We show that NPO(k) is well-defined and prove that the values of NPO(k) for k = 1, 2, 3, 4, 5 are 1, 3, 6, 10, 16 respectively. In addition, we prove that for all k >= 5, R(k, k + 1) >= NPO(k) > T-k, in which R(k, k + 1) is the Ramsey number for k and k + 1, and T-k is the kth triangular number. This implies new lower bounds for eigenvalues of Laplacian matrices: the kth largest eigenvalue is bounded from below the NPO(k)th largest degree, which generalizes some prior results. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1441 / 1451
页数:11
相关论文
共 50 条
  • [1] Bounds for eigenvalues of the adjacency matrix of a graph
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (04) : 415 - 432
  • [2] Lower bounds for fractional Laplacian eigenvalues
    Wei, Guoxin
    Sun, He-Jun
    Zeng, Lingzhong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [3] Lower bounds for the eigenvalues of Laplacian matrices
    Berman, A
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) : 13 - 20
  • [4] Sharp lower bounds on the Laplacian eigenvalues of trees
    Das, KC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 : 155 - 169
  • [5] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [6] On Eigenvalues of Hermitian-Adjacency Matrix
    Babarinsa, Olayiwola
    Sofi, Azfi Zaidi Mohammad
    Ibrahim, Mohd Asrul Hery
    Kamarulhaili, Hailiza
    Bashir, Dial
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (02): : 215 - 220
  • [7] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [8] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng Li
    Yong Liang Pan
    Acta Mathematica Sinica, 2004, 20 : 803 - 806
  • [9] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng LI Yong Liang PAN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2004, 20 (05) : 803 - 806
  • [10] On upper bounds for Laplacian graph eigenvalues
    Zhu, Dongmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2764 - 2772