An evolving view of methane metabolism in the Archaea

被引:404
作者
Evans, Paul N. [1 ]
Boyd, Joel A. [1 ]
Leu, Andy O. [1 ]
Woodcroft, Ben J. [1 ]
Parks, Donovan H. [1 ]
Hugenholtz, Philip [1 ]
Tyson, Gene W. [1 ]
机构
[1] Univ Queensland, Australian Ctr Ecogen, Sch Chem & Mol Biosci, St Lucia, Qld, Australia
基金
澳大利亚研究理事会;
关键词
COENZYME-M REDUCTASE; 16S RIBOSOMAL-RNA; MISCELLANEOUS CRENARCHAEOTAL GROUP; ANAEROBIC METHANOTROPHIC ARCHAEA; WOOD-LJUNGDAHL PATHWAY; SP NOV; METHANOGENIC ARCHAEA; GEN; NOV; METHYLTRANSFERASE COMPLEX; REVERSE METHANOGENESIS;
D O I
10.1038/s41579-018-0136-7
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Methane is a key compound in the global carbon cycle that influences both nutrient cycling and the Earth's climate. A limited number of microorganisms control the flux of biologically generated methane, including methane-metabolizing archaea that either produce or consume methane. Methanogenic and methanotrophic archaea belonging to the phylum Euryarchaeota share a genetically similar, interrelated pathway for methane metabolism. The key enzyme in this pathway, the methyl-coenzyme M reductase (Mcr) complex, catalyses the last step in methanogenesis and the first step in methanotrophy. The discovery of mcr and divergent mcr-like genes in new euryarchaeotal lineages and novel archaeal phyla challenges long-held views of the evolutionary origin of this metabolism within the Euryarchaeota. Divergent mcr-like genes have recently been shown to oxidize short-chain alkanes, indicating that these complexes have evolved to metabolize substrates other than methane. In this Review, we examine the diversity, metabolism and evolutionary history of mcr-containing archaea in light of these recent discoveries.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 132 条
[31]   METHANE FROM ACETATE [J].
FERRY, JG .
JOURNAL OF BACTERIOLOGY, 1992, 174 (17) :5489-5495
[32]   The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods [J].
Foster, Peter G. ;
Cox, Cymon J. ;
Embley, T. Martin .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 364 (1527) :2197-2207
[33]  
Fournier Greg, 2009, V532, P163, DOI 10.1007/978-1-60327-853-9_9
[34]   The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis [J].
Fricke, WF ;
Seedorf, H ;
Henne, A ;
Krüer, M ;
Liesegang, H ;
Hedderich, R ;
Gottschalk, G ;
Thauer, RK .
JOURNAL OF BACTERIOLOGY, 2006, 188 (02) :642-658
[35]   Methyl-coenzyme M reductase genes:: Unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea [J].
Friedrich, MW .
ENVIRONMENTAL MICROBIOLOGY, 2005, 397 :428-442
[36]   Prokaryotic Populations and Activities in an Interbedded Coal Deposit, Including a Previously Deeply Buried Section (1.6-2.3 km) Above 150 Ma Basement Rock [J].
Fry, John C. ;
Horsfield, Brian ;
Sykes, Richard ;
Cragg, Barry A. ;
Heywood, Chloe ;
Kim, Gwang Tae ;
Mangelsdorf, Kai ;
Mildenhall, Dallas C. ;
Rinna, Joachim ;
Vieth, Andrea ;
Zink, Klaus-G ;
Sass, Henrik ;
Weightman, Andrew J. ;
Parkes, R. John .
GEOMICROBIOLOGY JOURNAL, 2009, 26 (03) :163-178
[37]   Novel Cultivation-Based Approach To Understanding the Miscellaneous Crenarchaeotic Group (MCG) Archaea from Sedimentary Ecosystems [J].
Gagen, Emma J. ;
Huber, Harald ;
Meador, Travis ;
Hinrichs, Kai-Uwe ;
Thomm, Michael .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (20) :6400-6406
[38]   Taxonomic phylogenetic and ecological diversity of methanogenic Archaea [J].
Garcia, JL ;
Patel, BKC ;
Ollivier, B .
ANAEROBE, 2000, 6 (04) :205-226
[39]   Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor [J].
Girguis, PR ;
Orphan, VJ ;
Hallam, SJ ;
DeLong, EF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5472-5482
[40]   The Na+-translocating methyltransferase complex from methanogenic archaea [J].
Gottschalk, G ;
Thauer, RK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1505 (01) :28-36