An evolving view of methane metabolism in the Archaea

被引:404
作者
Evans, Paul N. [1 ]
Boyd, Joel A. [1 ]
Leu, Andy O. [1 ]
Woodcroft, Ben J. [1 ]
Parks, Donovan H. [1 ]
Hugenholtz, Philip [1 ]
Tyson, Gene W. [1 ]
机构
[1] Univ Queensland, Australian Ctr Ecogen, Sch Chem & Mol Biosci, St Lucia, Qld, Australia
基金
澳大利亚研究理事会;
关键词
COENZYME-M REDUCTASE; 16S RIBOSOMAL-RNA; MISCELLANEOUS CRENARCHAEOTAL GROUP; ANAEROBIC METHANOTROPHIC ARCHAEA; WOOD-LJUNGDAHL PATHWAY; SP NOV; METHANOGENIC ARCHAEA; GEN; NOV; METHYLTRANSFERASE COMPLEX; REVERSE METHANOGENESIS;
D O I
10.1038/s41579-018-0136-7
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Methane is a key compound in the global carbon cycle that influences both nutrient cycling and the Earth's climate. A limited number of microorganisms control the flux of biologically generated methane, including methane-metabolizing archaea that either produce or consume methane. Methanogenic and methanotrophic archaea belonging to the phylum Euryarchaeota share a genetically similar, interrelated pathway for methane metabolism. The key enzyme in this pathway, the methyl-coenzyme M reductase (Mcr) complex, catalyses the last step in methanogenesis and the first step in methanotrophy. The discovery of mcr and divergent mcr-like genes in new euryarchaeotal lineages and novel archaeal phyla challenges long-held views of the evolutionary origin of this metabolism within the Euryarchaeota. Divergent mcr-like genes have recently been shown to oxidize short-chain alkanes, indicating that these complexes have evolved to metabolize substrates other than methane. In this Review, we examine the diversity, metabolism and evolutionary history of mcr-containing archaea in light of these recent discoveries.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 132 条
[1]   Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes [J].
Adam, Panagiotis S. ;
Borrel, Guillaume ;
Gribaldo, Simonetta .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (06) :E1166-E1173
[2]   The growing tree of Archaea: new perspectives on their diversity, evolution and ecology [J].
Adam, Panagiotis S. ;
Borrel, Guillaume ;
Brochier-Armanet, Celine ;
Gribaldo, Simonetta .
ISME JOURNAL, 2017, 11 (11) :2407-2425
[3]   A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea [J].
Arshad, Arslan ;
Speth, Daan R. ;
de Graaf, Rob M. ;
Op den Camp, Huub J. M. ;
Jetten, Mike S. M. ;
Welte, Cornelia U. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[4]  
Baker BJ, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.2, 10.1038/nmicrobiol.2016.2]
[5]  
Bapteste Eric, 2005, Archaea, V1, P353, DOI 10.1155/2005/859728
[6]   Manganese- and Iron-Dependent Marine Methane Oxidation [J].
Beal, Emily J. ;
House, Christopher H. ;
Orphan, Victoria J. .
SCIENCE, 2009, 325 (5937) :184-187
[7]   Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response [J].
Becker, Erin A. ;
Seitzer, Phillip M. ;
Tritt, Andrew ;
Larsen, David ;
Krusor, Megan ;
Yao, Andrew I. ;
Wu, Dongying ;
Madern, Dominique ;
Eisen, Jonathan A. ;
Darling, Aaron E. ;
Facciotti, Marc T. .
PLOS GENETICS, 2014, 10 (11)
[8]   Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways [J].
Berg, Ivan A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (06) :1925-1936
[9]   Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments [J].
Biddle, Jennifer F. ;
Cardman, Zena ;
Mendlovitz, Howard ;
Albert, Daniel B. ;
Lloyd, Karen G. ;
Boetius, Antje ;
Teske, Andreas .
ISME JOURNAL, 2012, 6 (05) :1018-1031
[10]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626