Improved Multilabel Classification with Neural Networks

被引:0
|
作者
Grodzicki, Rafal [1 ]
Mandziuk, Jacek [1 ]
Wang, Lipo [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Plac Politech 1, PL-00661 Warsaw, Poland
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN X, PROCEEDINGS | 2008年 / 5199卷
关键词
multilabel; learning system; neural network; backpropagation; bioinformatics; functional genomics;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers the multilabel classification problem, which is, a generalization of traditional two-class or multi-class classification problem In multilabel classification a set of labels (categories) is given and each training instance is associated with a subset of this label-set. The task is to Output the appropriate subset of labels (generally of unknown size) for a given, unknown testing instance. Sonic improvements to the existing neural network multilabel classification algorithm, named BP-MLL. are proposed here. The modifications concern the form of the global error function used in BP-MLL. The modified classification system is tested in the domain of functional genomics, on the yeast genome data set. Experimental results show that proposed modifications visibly improve the performance of the neural network based multilabel classifier. The results are statistically significant.
引用
收藏
页码:409 / +
页数:3
相关论文
共 50 条
  • [1] Randomized neural networks for multilabel classification
    Chauhan, Vikas
    Tiwari, Aruna
    APPLIED SOFT COMPUTING, 2022, 115
  • [2] Dimensionality Reduction in Multilabel Classification with Neural Networks
    Mandziuk, Jacek
    Zychowski, Adam
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [3] MULTILABEL CLASSIFICATION OF UAV IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS
    Zeggada, Abdallah
    Melgani, Farid
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5083 - 5086
  • [4] Improving Multilabel Text Classification with Stacking and Recurrent Neural Networks
    Mansueli, Rodrigo
    Domingues, Marcos Aurelio
    Feltrim, Valeria Delisandra
    PROCEEDINGS OF THE 28TH BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, WEBMEDIA 2022, 2022, : 117 - 122
  • [5] Ensemble of Networks for Multilabel Classification
    Nanni, Loris
    Trambaiollo, Luca
    Brahnam, Sheryl
    Guo, Xiang
    Woolsey, Chancellor
    SIGNALS, 2022, 3 (04): : 911 - 931
  • [6] Graph Neural Networks-Based Multilabel Classification of Citation Network
    Lachaud, Guillaume
    Conde-Cespedes, Patricia
    Trocan, Maria
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 : 128 - 140
  • [7] Multilabel land cover aerial image classification using convolutional neural networks
    Kareem R.S.A.
    Ramanjineyulu A.G.
    Rajan R.
    Setiawan R.
    Sharma D.K.
    Gupta M.K.
    Joshi H.
    Kumar A.
    Harikrishnan H.
    Sengan S.
    Arabian Journal of Geosciences, 2021, 14 (17)
  • [8] Combining Scatter Transform and Deep Neural Networks for Multilabel Electrocardiogram Signal Classification
    Oppelt, Maximilian P.
    Riehl, Maximilian
    Kemeth, Felix P.
    Steffan, Jan
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [9] Hyperthyroidism Etiological Diagnosis: a Multilabel Classification using Convolutional Neural Networks on Thyroid Scans
    Abdi, M.
    Naili, Q.
    Habbeche, M.
    Bourouba, M.
    Berrani, S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S286 - S286
  • [10] Image Classification Algorithm Based on Big Data and Multilabel Learning of Improved Convolutional Neural Network
    Chang, Haibin
    Cui, Ying
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021