Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices

被引:44
作者
De Vito, Saverio [1 ]
Di Francia, Girolamo [1 ]
Esposito, Elena [1 ]
Ferlito, Sergio [1 ]
Formisano, Fabrizio [1 ]
Massera, Ettore [1 ]
机构
[1] ENEA DTE FSN SAFS, Ple E Fermi 1, I-80055 Portici, NA, Italy
关键词
MICROSENSORS; OLFACTION;
D O I
10.1016/j.patrec.2020.04.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air Quality Multi-sensors Systems (AQMS) are IoT devices based on low cost chemical microsensors array that recently have showed capable to provide relatively accurate air pollutant quantitative estimations. Their availability permits to deploy pervasive Air Quality Monitoring (AQM) networks that will solve the geographical sparseness issue that affect the current network of AQ Regulatory Monitoring Systems (AQRMS). Unfortunately their accuracy have shown limited in long term field deployments due to negative influence of several technological issues including sensors poisoning or ageing, non target gas interference, lack of fabrication repeatability, etc. Seasonal changes in probability distribution of priors, observables and hidden context variables (i.e. non observable interferents) challenge field data driven calibration models which short to mid term performances recently rose to the attention of Urban authorithies and monitoring agencies. In this work, we address this non stationary framework with adaptive learning strategies in order to prolong the validity of multisensors calibration models enabling continuous learning. Relevant parameters influence in different network and node-to-node recalibration scenario is analyzed. Results are hence useful for pervasive deployment aimed to permanent high resolution AQ mapping in urban scenarios as well as for the use of AQMS as AQRMS backup systems providing data when AQRMS data are unavailable due to faults or scheduled mainteinance. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 18 条
[1]  
Arfire, 2015, MODEL BASED RENDEZVO
[2]   Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise - Part II [J].
Borrego, C. ;
Ginja, J. ;
Coutinho, M. ;
Ribeiro, C. ;
Karatzas, K. ;
Sioumis, Th ;
Katsifarakis, N. ;
Konstantinidis, K. ;
De Vito, S. ;
Esposito, E. ;
Salvato, M. ;
Smith, P. ;
Andre, N. ;
Gerard, P. ;
Francis, L. A. ;
Castell, N. ;
Schneider, P. ;
Viana, M. ;
Minguillon, M. C. ;
Reimringer, W. ;
Otjes, R. P. ;
von Sicard, O. ;
Pohle, R. ;
Elen, B. ;
Suriano, D. ;
Pfister, V ;
Prato, M. ;
Dipinto, S. ;
Penza, M. .
ATMOSPHERIC ENVIRONMENT, 2018, 193 :127-142
[3]   Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise [J].
Borrego, C. ;
Costa, A. M. ;
Ginja, J. ;
Amorim, M. ;
Coutinho, M. ;
Karatzas, K. ;
Sioumis, Th. ;
Katsifarakis, N. ;
Konstantinidis, K. ;
De Vito, S. ;
Esposito, E. ;
Smith, P. ;
Andre, N. ;
Gerard, P. ;
Francis, L. A. ;
Castell, N. ;
Schneider, P. ;
Viana, M. ;
Minguillon, M. C. ;
Reimringer, W. ;
Otjes, R. P. ;
von Sicard, O. ;
Pohle, R. ;
Elen, B. ;
Suriano, D. ;
Pfister, V. ;
Prato, M. ;
Dipinto, S. ;
Penza, M. .
ATMOSPHERIC ENVIRONMENT, 2016, 147 :246-263
[4]   Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements [J].
Cross, Eben S. ;
Williams, Leah R. ;
Lewis, David K. ;
Magoon, Gregory R. ;
Onasch, Timothy B. ;
Kaminsky, Michael L. ;
Worsnop, Douglas R. ;
Jayne, John T. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (09) :3575-3588
[5]   Calibrating chemical multisensory devices for real world applications: An in-depth comparison of quantitative machine learning approaches [J].
De Vito, S. ;
Esposito, E. ;
Salvato, M. ;
Popoola, O. ;
Formisano, F. ;
Jones, R. ;
Di Francia, G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 255 :1191-1210
[6]  
De Vito S, 2019, 2019 IEEE INTERNATIONAL SYMPOSIUM ON OLFACTION AND ELECTRONIC NOSE (ISOEN 2019), P324
[7]   Semi-Supervised Learning Techniques in Artificial Olfaction: A Novel Approach to Classification Problems and Drift Counteraction [J].
De Vito, Saverio ;
Fattoruso, Grazia ;
Pardo, Matteo ;
Tortorella, Francesco ;
Di Francia, Girolamo .
IEEE SENSORS JOURNAL, 2012, 12 (11) :3215-3224
[8]   Learning in Nonstationary Environments: A Survey [J].
Ditzler, Gregory ;
Roveri, Manuel ;
Alippi, Cesare ;
Polikar, Robi .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2015, 10 (04) :12-25
[9]   Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems [J].
Esposito, E. ;
De Vito, S. ;
Salvato, M. ;
Bright, V. ;
Jones, R. L. ;
Popoola, O. .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 231 :701-713
[10]  
Hasenfratz David, 2012, Wireless Sensor Networks. Proceedings 9th European Conference, EWSN 2012, P228, DOI 10.1007/978-3-642-28169-3_15