Automatic pigment network classification using a combination of classical texture descriptors and CNN features

被引:0
作者
Pap, Melinda [1 ]
Harangi, Balazs [1 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, POB400, H-4002 Debrecen, Hungary
来源
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2017年
关键词
pigment network; machine learning; feature extraction; deep learning; DERMOSCOPY;
D O I
10.1109/CBMS.2017.63
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The presence of atypical (irregular) pigment networks can be a symptom of melanoma malignum in skin lesions, thus, their proper recognition is a critical task. For object classification problems, the application of deep convolutional neural nets (CNN) receives priority attention nowadays for their high recognition rate. The descriptive features found by CNNs are more hidden than the classically applied ones for texture recognition. In this paper, we investigate whether CNN features outperform the classical texture descriptors in the classification of typical/atypical pigment network. Beyond performing this analysis, we have also found that the aggregation of CNN and classical features within a joint classification framework had a superior performance. Specifically, the union of the CNN and classical feature sets leads to a much higher stability in classification performance for various classifiers. As for quantitative figures, we have reached 90.44% recognition accuracy using a specific subset of this combined feature set obtained by linear forward feature selection and using a Bayes Net as classifier.
引用
收藏
页码:343 / 348
页数:6
相关论文
共 21 条
[1]   Noninvasive Real-Time Automated Skin Lesion Analysis System for Melanoma Early Detection and Prevention [J].
Abuzaghleh, Omar ;
Barkana, Buket D. ;
Faezipour, Miad .
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2015, 3
[2]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[3]   A System for the Detection of Pigment Network in Dermoscopy Images Using Directional Filters [J].
Barata, Catarina ;
Marques, Jorge S. ;
Rozeira, Jorge .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (10) :2744-2754
[4]   Adaptive sharpening of depth maps for 3D-TV [J].
De Silva, D. V. S. X. ;
Fernando, W. A. C. ;
Kodikaraarachchi, H. ;
Worrall, S. T. ;
Kondoz, A. M. .
ELECTRONICS LETTERS, 2010, 46 (23) :1546-1547
[5]   An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesions [J].
Di Leo, G. ;
Liguori, C. ;
Paolillo, A. ;
Sommella, P. .
2008 IEEE INTERNATIONAL CONFERENCE ON VIRTUAL ENVIRONMENTS, HUMAN-COMPUTER INTERFACES AND MEASUREMENT SYSTEMS, 2008, :190-195
[6]  
Frangi AF, 1998, LECT NOTES COMPUT SC, V1496, P130, DOI 10.1007/BFb0056195
[7]   Large-scale attribute selection using wrappers [J].
Guetlein, Martin ;
Frank, Eibe ;
Hall, Mark ;
Karwath, Andreas .
2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, :332-339
[8]  
Hajdu A, 2016, INT C PATT RECOG, P1524, DOI 10.1109/ICPR.2016.7899853
[9]  
Hall M.A, 1998, Thesis
[10]   TEXTURAL FEATURES FOR IMAGE CLASSIFICATION [J].
HARALICK, RM ;
SHANMUGAM, K ;
DINSTEIN, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (06) :610-621