BASIC HYPERGEOMETRIC FUNCTIONS AND ORTHOGONAL LAURENT POLYNOMIALS

被引:8
|
作者
Costa, Marisa S. [1 ]
Godoy, Eduardo [2 ]
Lamblem, Regina L.
Sri Ranga, A. [1 ]
机构
[1] Univ Estadual Paulista, UNESP, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Vigo, Dept Matemat Aplicada 2, ETSI Ind, Vigo 36310, Spain
基金
巴西圣保罗研究基金会;
关键词
Basic hypergeometric functions; continued fractions; orthogonal Laurent polynomials; Szego polynomials; UNIT-CIRCLE; SZEGO; QUADRATURE; RESPECT;
D O I
10.1090/S0002-9939-2011-11066-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A three-complex-parameter class of orthogonal Laurent polynomials on the unit circle associated with basic hypergeometric or q-hypergeometric functions is considered. To be precise, we consider the orthogonality properties of the sequence of polynomials {(2)Phi(1)(q(-n), q(b+1); q(-c+b-n); q,q(-c+d-1)z)}(n=0)(infinity), where 0 < q < 1 and the complex parameters b, c and d are such that b not equal -1, -2, ... , c - b + 1 not equal -1, -2, ... , Re(d) > 0 and Re(c - d + 2) > 0. Explicit expressions for the recurrence coefficients, moments, orthogonality and also asymptotic properties are given. By a special choice of the parameters, results regarding a class of Szego polynomials are also derived.
引用
收藏
页码:2075 / 2089
页数:15
相关论文
共 50 条
  • [41] Matrix hypergeometric functions, semi-classical orthogonal polynomials and quantum Painleve equations
    Inamasu, Kouki
    Kimura, Hironobu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (5-8) : 528 - 544
  • [42] Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
    Vinet, Luc
    Zhedanov, Alexei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [43] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Fabio Deelan Cunden
    Francesco Mezzadri
    Neil O’Connell
    Nick Simm
    Communications in Mathematical Physics, 2019, 369 : 1091 - 1145
  • [44] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Cunden, Fabio Deelan
    Mezzadri, Francesco
    O'Connell, Neil
    Simm, Nick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (03) : 1091 - 1145
  • [45] INTEGRAL AND HYPERGEOMETRIC REPRESENTATIONS FOR MULTIPLE ORTHOGONAL POLYNOMIALS
    Branquinho, Amílcar
    Díaz, Juan E.F.
    Foulquié-Moreno, Ana
    Mañas, Manuel
    Wolfs, Thomas
    arXiv,
  • [46] Orthogonal Laurent polynomials and strong moment theory:: a survey
    Jones, WB
    Njåstad, O
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 51 - 91
  • [47] Orthogonal Laurent polynomials of jacobi, hermite, and laguerre types
    Hagler, BA
    Jones, WB
    Thron, WJ
    ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 187 - 208
  • [48] Orthogonal Laurent polynomials. A new algebraic approach
    Cruz-Barroso, R.
    Diaz Mendoza, C.
    Orive, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 40 - 54
  • [49] Laurent skew orthogonal polynomials and related symplectic matrices
    Miki, Hiroshi
    JOURNAL OF APPROXIMATION THEORY, 2020, 259
  • [50] The extended Krylov subspace method and orthogonal Laurent polynomials
    Jagels, Carl
    Reichel, Lothar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 441 - 458