BASIC HYPERGEOMETRIC FUNCTIONS AND ORTHOGONAL LAURENT POLYNOMIALS

被引:8
|
作者
Costa, Marisa S. [1 ]
Godoy, Eduardo [2 ]
Lamblem, Regina L.
Sri Ranga, A. [1 ]
机构
[1] Univ Estadual Paulista, UNESP, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Vigo, Dept Matemat Aplicada 2, ETSI Ind, Vigo 36310, Spain
基金
巴西圣保罗研究基金会;
关键词
Basic hypergeometric functions; continued fractions; orthogonal Laurent polynomials; Szego polynomials; UNIT-CIRCLE; SZEGO; QUADRATURE; RESPECT;
D O I
10.1090/S0002-9939-2011-11066-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A three-complex-parameter class of orthogonal Laurent polynomials on the unit circle associated with basic hypergeometric or q-hypergeometric functions is considered. To be precise, we consider the orthogonality properties of the sequence of polynomials {(2)Phi(1)(q(-n), q(b+1); q(-c+b-n); q,q(-c+d-1)z)}(n=0)(infinity), where 0 < q < 1 and the complex parameters b, c and d are such that b not equal -1, -2, ... , c - b + 1 not equal -1, -2, ... , Re(d) > 0 and Re(c - d + 2) > 0. Explicit expressions for the recurrence coefficients, moments, orthogonality and also asymptotic properties are given. By a special choice of the parameters, results regarding a class of Szego polynomials are also derived.
引用
收藏
页码:2075 / 2089
页数:15
相关论文
共 50 条