Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height

被引:12
作者
Ballarin, Francesco [1 ]
Chacon Rebollo, Tomas [2 ,3 ]
Avila, Enrique Delgado [1 ]
Gomez Marmol, Macarena [3 ]
Rozza, Gianluigi [1 ]
机构
[1] Scuola Int Super Studi Avanzati, SISSA, Math Area, mathLab, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Seville, IMUS, Apdo Correos 1160, Seville 41080, Spain
[3] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, Seville 41080, Spain
基金
欧盟地平线“2020”;
关键词
Reduced basis method; Empirical interpolation method; a posteriori error estimation; Boussinesq equations; Smagorinsky LES model; POSTERIORI ERROR ESTIMATION; NAVIER-STOKES EQUATIONS; BASIS APPROXIMATION; STABILITY;
D O I
10.1016/j.camwa.2020.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi-Rappaz-Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:973 / 989
页数:17
相关论文
共 36 条
[1]  
[Anonymous], 2015, SpringerBriefs in Mathematics
[2]  
[Anonymous], 2010, FUNCTIONAL ANAL
[3]  
Avila E. Delgado, 2018, THESIS U SEVILLE
[4]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[5]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[6]   Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows [J].
Chacón Rebollo T. ;
Delgado Ávila E. ;
Gómez Mármol M. ;
Rubino S. .
Journal of Mathematics in Industry, 2018, 8 (01)
[7]   ON A CERTIFIED SMAGORINSKY REDUCED BASIS TURBULENCE MODEL [J].
Chacon Rebollo, Tomas ;
Delgado Avila, Enrique ;
Gomez Marmol, Macarena ;
Ballarin, Francesco ;
Rozza, Gianluigi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) :3047-3067
[8]  
Cuong NN, 2005, Handbook of materials modeling, P1523, DOI [10.1007/978-1-4020-3286-8_76, DOI 10.1007/978-1-4020-3286-8_76]
[9]  
DAVIS GD, 1983, INT J NUMER METH FL, V3, P249
[10]   Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach [J].
Deparis, Simone .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :2039-2067