Method for joint estimation for states and parameters concerning non-linear systems with time-correlated measurement noise

被引:1
作者
Liu, Hongqiang [1 ,2 ]
Zhou, Zhongliang [1 ]
Yang, Haiyan [3 ]
机构
[1] Air Force Engn Univ, Aeronaut & Astronaut Coll, Xian, Shaanxi, Peoples R China
[2] Air Force Aviat Univ, Aviat Combat & Serv Inst, Changchun, Jilin, Peoples R China
[3] Air Force Engn Univ, Air Traff Control & Nav Coll, Xian, Shaanxi, Peoples R China
关键词
EXPECTATION-MAXIMIZATION; IDENTIFICATION; FILTER;
D O I
10.1049/iet-cta.2018.5605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A dimensionality-reduction-augmented non-linear state-space representation has been proposed to reduce the optimisation space for maximum-likelihood estimation. Based on the above representation, an expectation-maximisation algorithm has been derived to realise joint estimation of states and parameters. During the expectation step, the system state was estimated via the use of a fifth-order cubature Kalman filter and Rauch-Tung-Striebel smoother based on the state-augmented method. During the maximisation step, unknown parameters within iterations were estimated using the Newton method. Subsequently, two joint-estimation methods - one containing all measurements and the other involving a sliding window - were developed to estimate the invariants and step parameters, respectively. An example concerning manoeuvring-target tracking has been discussed to demonstrate the performance of proposed algorithms.
引用
收藏
页码:721 / 731
页数:11
相关论文
共 21 条
  • [1] Convergence Analysis of Extended Kalman Filter for Sensorless Control of Induction Motor
    Alonge, Francesco
    Cangemi, Tommaso
    D'Ippolito, Filippo
    Fagiolini, Adriano
    Sferlazza, Antonino
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (04) : 2341 - 2352
  • [2] [Anonymous], SENSORS BASEL
  • [3] [Anonymous], 2014, J INF COMPUT SCI
  • [4] A new experimental application of least-squares techniques for the estimation of the induction motor parameters
    Cirrincione, M
    Pucci, M
    Cirrincione, G
    Capolino, GA
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (05) : 1247 - 1256
  • [5] Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximization algorithm
    Dreano, D.
    Tandeo, P.
    Pulido, M.
    Ait-El-Fquih, B.
    Chonavel, T.
    Hoteit, I.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (705) : 1877 - 1885
  • [6] Turn rate estimation using range rate measurements for fast manoeuvring tracking
    Frencl, Victor B.
    do Val, Joao B. R.
    Mendes, Rafael S.
    Zuniga, Yusef C.
    [J]. IET RADAR SONAR AND NAVIGATION, 2017, 11 (07) : 1099 - 1107
  • [7] Noise covariance identification for nonlinear systems using expectation maximization and moving horizon estimation
    Ge, Ming
    Kerrigan, Eric C.
    [J]. AUTOMATICA, 2017, 77 : 336 - 343
  • [8] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [9] Robust maximum-likelihood estimation of multivariable dynamic systems
    Gibson, S
    Ninness, B
    [J]. AUTOMATICA, 2005, 41 (10) : 1667 - 1682
  • [10] Joint estimation and identification for stochastic systems with unknown inputs
    Lan, Hua
    Liang, Yan
    Yang, Feng
    Wang, Zengfu
    Pan, Quan
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (10) : 1377 - 1386