Method for joint estimation for states and parameters concerning non-linear systems with time-correlated measurement noise

被引:1
作者
Liu, Hongqiang [1 ,2 ]
Zhou, Zhongliang [1 ]
Yang, Haiyan [3 ]
机构
[1] Air Force Engn Univ, Aeronaut & Astronaut Coll, Xian, Shaanxi, Peoples R China
[2] Air Force Aviat Univ, Aviat Combat & Serv Inst, Changchun, Jilin, Peoples R China
[3] Air Force Engn Univ, Air Traff Control & Nav Coll, Xian, Shaanxi, Peoples R China
关键词
EXPECTATION-MAXIMIZATION; IDENTIFICATION; FILTER;
D O I
10.1049/iet-cta.2018.5605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A dimensionality-reduction-augmented non-linear state-space representation has been proposed to reduce the optimisation space for maximum-likelihood estimation. Based on the above representation, an expectation-maximisation algorithm has been derived to realise joint estimation of states and parameters. During the expectation step, the system state was estimated via the use of a fifth-order cubature Kalman filter and Rauch-Tung-Striebel smoother based on the state-augmented method. During the maximisation step, unknown parameters within iterations were estimated using the Newton method. Subsequently, two joint-estimation methods - one containing all measurements and the other involving a sliding window - were developed to estimate the invariants and step parameters, respectively. An example concerning manoeuvring-target tracking has been discussed to demonstrate the performance of proposed algorithms.
引用
收藏
页码:721 / 731
页数:11
相关论文
共 21 条
[1]   Convergence Analysis of Extended Kalman Filter for Sensorless Control of Induction Motor [J].
Alonge, Francesco ;
Cangemi, Tommaso ;
D'Ippolito, Filippo ;
Fagiolini, Adriano ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (04) :2341-2352
[2]  
[Anonymous], SENSORS BASEL
[3]  
[Anonymous], 2014, J INF COMPUT SCI
[4]   A new experimental application of least-squares techniques for the estimation of the induction motor parameters [J].
Cirrincione, M ;
Pucci, M ;
Cirrincione, G ;
Capolino, GA .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (05) :1247-1256
[5]   Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximization algorithm [J].
Dreano, D. ;
Tandeo, P. ;
Pulido, M. ;
Ait-El-Fquih, B. ;
Chonavel, T. ;
Hoteit, I. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (705) :1877-1885
[6]   Turn rate estimation using range rate measurements for fast manoeuvring tracking [J].
Frencl, Victor B. ;
do Val, Joao B. R. ;
Mendes, Rafael S. ;
Zuniga, Yusef C. .
IET RADAR SONAR AND NAVIGATION, 2017, 11 (07) :1099-1107
[7]   Noise covariance identification for nonlinear systems using expectation maximization and moving horizon estimation [J].
Ge, Ming ;
Kerrigan, Eric C. .
AUTOMATICA, 2017, 77 :336-343
[8]   Maximum-likelihood parameter estimation of bilinear systems [J].
Gibson, S ;
Wills, A ;
Ninness, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) :1581-1596
[9]   Robust maximum-likelihood estimation of multivariable dynamic systems [J].
Gibson, S ;
Ninness, B .
AUTOMATICA, 2005, 41 (10) :1667-1682
[10]   Joint estimation and identification for stochastic systems with unknown inputs [J].
Lan, Hua ;
Liang, Yan ;
Yang, Feng ;
Wang, Zengfu ;
Pan, Quan .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (10) :1377-1386