Influence of Processing Variables on the Mechanical Behavior of HDPE/clay Nanocomposites

被引:6
作者
Barbosa, Renata [1 ]
Souza Morais, Dayanne Diniz [2 ]
Nobrega, Karine Castro [2 ]
Araujo, Edcleide Maria [2 ]
Alves Melo, Tomas Jeferson [2 ]
机构
[1] Fed Univ Piaui UFPI, Dept Mech Engn, BR-64049550 Teresina, PI, Brazil
[2] Fed Univ Campina Grande UFCG, Dept Mat Engn, BR-58429900 Campina Grande, PB, Brazil
来源
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS | 2012年 / 15卷 / 03期
关键词
nanocomposites; organoclay; mechanical behavior; MALEATED POLYPROPYLENE; CLAY; DISPERSION;
D O I
10.1590/S1516-14392012005000054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocomposites were processed using the technique of melt intercalation, starting from a concentrated polar compatibilizer/organoclay (PE-g-MA/organoclay) prepared in an internal mixer. The concentrate was incorporated into the matrix of HDPE by two methods: I) counter-rotating twin-screw extruder and II) co-rotating twin-screw extruder, using two screw profiles (ROS and 2KB90). After extrusion, the specimens of the extruded composites were injection molded. The X-ray diffraction (XRD) technique was used to analyze the degree of expansion of the prepared clays. To analyze the degree of exfoliation of obtained nanocomposites, XRD and TEM (transmission electron microscopy) were used. The influence of processing variables on mechanical properties was studied through the behavior of the modulus and tensile strength of nanocomposite systems. By XRD and TEM, it was seen that the clay was well dispersed in the matrix and the presence of intercalated and partially exfoliated hybrid structure for nanocomposites was observed when the systems were prepared in counter-rotating twin-screw extruder. A similar behavior was observed in the use of screws (2KB90 or ROS) of the nanocomposites, with a reduction in modulus and tensile strength. Although the mixing process by extruding be the most common industrial practice, and also it is the preferred strategy for the preparation of polymer nanocomposites, much of the literature was directed to the study of chemical modification of clay, type and level of compatibilizer, in order to maximize the compatibility between clay and the polymeric matrix. On the other hand, studies about the role of the processing and configurations of screws are relatively scarce. The main motivation of this work was to expand and to contribute to spread a better understanding of the effects of processing to obtain polymer nanocomposites.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 24 条
[1]  
American Society for Testing and Materials (ASTM), 2002, D63802 ASTM
[2]   Thermal and mechanical properties of PE/organoclay nanocomposites [J].
Araujo, E. M. ;
Barbosa, Renata ;
Oliveira, Amanda D. ;
Morais, Crislene R. S. ;
de Melo, T. J. A. ;
Souza, A. G. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 87 (03) :811-814
[3]  
Barbosa R, 2008, P POL PROC 24 ANN M
[4]  
BERGAYA F, 2006, HDB CLAYS SCI
[5]  
Bertolino M. K., 2008, P 24 ANN M POL PROC
[6]  
Bikales NM, 1986, ENCY POLYM SCI ENG, V4
[7]  
Brydson J. A., 1982, PLASTICS MAT
[8]   Polystyrene/clay nanocomposites [J].
Carastan, D. J. ;
Demarquette, N. R. .
INTERNATIONAL MATERIALS REVIEWS, 2007, 52 (06) :345-380
[9]   MODIFICATION OF A BRAZILIAN SMECTITE CLAY WITH DIFFERENT QUATERNARY AMMONIUM SALTS [J].
Delbem, Maria Flavia ;
Valera, Ticiane S. ;
Valenzuela-Diaz, Francisco R. ;
Demarquette, Nicole R. .
QUIMICA NOVA, 2010, 33 (02) :309-315
[10]  
Demarquette NR, 2008, POLYM NANOCOMPOSITES, P327