Low temperature influence on performance and transport of Ω-gate p-type SiGe-on-insulator nanowire MOSFETs

被引:2
作者
Paz, Bruna Cardoso [1 ]
Casse, Mikael [2 ]
Barraud, Sylvain [2 ]
Reimbold, Gilles [2 ]
Vinet, Maud [2 ]
Faynot, Olivier [2 ]
Pavanello, Marcelo Antonio [1 ]
机构
[1] Ctr Univ FEI, Dept Elect Engn, Sao Bernardo Do Campo, Brazil
[2] CEA LETI Minatec, SCME LCTE, Dept Composants Silicium, Grenoble, France
基金
巴西圣保罗研究基金会;
关键词
SiGe; SGOI; Strain; Nanowire; Low temperature; Quantum transport; Analog parameters; CMOS; FABRICATION; MOBILITY;
D O I
10.1016/j.sse.2019.03.041
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work evaluates the operation of p-type Si0.7Ge0.3-On-Insulator (SGOI) nanowires from room temperature down to 5.2 K. Electrical characteristics are shown for long channel devices comparing narrow Omega-gate to quasiplanar MOSFETs (wide fin width). Analysis is performed starting from basic MOSFET electrical parameters extraction, evidence of quantum transport, transconductance and capacitance step-like behavior. Temperature and fin width influence over mobility results are discussed for uniaxial and biaxial compressive strained SGOI. Results are also compared to unstrained p-type SOI nanowires and effective mobility enhancement for SGOI nanowires is still observed for devices with fin width scaled down to 20 nm. Narrow SGOI NW presents mobility improvement over quasi-planar SGOI structure for all temperature range due to beneficial uniaxial strain over biaxial one. Cryogenic operation of nanowires allowed the dissociation of phonon and surface roughness mobility contributions, which are also discussed in this work. Similar phonon-limited mobility contribution dependence on temperature is obtained for both narrow SGOI and unstrained SOI transistors. In order to provide a complete study on the performance of SGOI nanowires, temperature influence is also investigated over analog parameters for narrow SGOI transistor.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 36 条
[1]   Quantum Confinement Effects in Capacitance Behavior of Multigate Silicon Nanowire MOSFETs [J].
Afzalian, Aryan ;
Lee, Chi-Woo ;
Akhavan, Nima Dehdashti ;
Yan, Ran ;
Ferain, Isabelle ;
Colinge, Jean-Pierre .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (02) :300-309
[2]  
[Anonymous], 2014, 2014 S VLSI TECHN VL
[3]  
Baie X, 1995, 1995 IEEE INTERNATIONAL SOI CONFERENCE PROCEEDINGS, P66, DOI 10.1109/SOI.1995.526463
[4]  
Bangsaruntip S, 2009, 2009 IEEE INT ELECT, P1
[5]  
Barraud S, 2014, INT CONF ULTI INTEGR, P65, DOI 10.1109/ULIS.2014.6813907
[6]   Performance of Omega-Shaped-Gate Silicon Nanowire MOSFET With Diameter Down to 8 nm [J].
Barraud, S. ;
Coquand, R. ;
Casse, M. ;
Koyama, M. ;
Hartmann, J. -M. ;
Maffini-Alvaro, V. ;
Comboroure, C. ;
Vizioz, C. ;
Aussenac, F. ;
Faynot, O. ;
Poiroux, T. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (11) :1526-1528
[7]   Experimental Investigation of Hole Transport in Strained Si1-xGex/SOI pMOSFETs-Part I: Scattering Mechanisms in Long-Channel Devices [J].
Casse, Mikael ;
Hutin, L. ;
Le Royer, Cyrille ;
Cooper, D. ;
Hartmann, Jean-Michel ;
Reimbold, Gilles .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (02) :316-325
[8]  
Chiang W. T., 2007, VLSI S, P1
[9]  
Colinge J. P., 1990, International Electron Devices Meeting 1990. Technical Digest (Cat. No.90CH2865-4), P595, DOI 10.1109/IEDM.1990.237128
[10]   Quantum-wire effects in trigate SOI MOSFETs [J].
Colinge, Jean-Pierre .
SOLID-STATE ELECTRONICS, 2007, 51 (09) :1153-1160