Identifying blood biomarkers for mood disorders using convergent functional genomics

被引:156
作者
Le-Niculescu, H. [1 ,2 ,3 ]
Kurian, S. M. [4 ]
Yehyawi, N. [2 ,5 ]
Dike, C. [2 ,5 ]
Patel, S. D. [2 ,3 ]
Edenberg, H. J. [6 ]
Tsuang, M. T. [7 ]
Salomon, D. R. [4 ]
Nurnberger, J. I., Jr. [3 ]
Niculescu, A. B. [1 ,2 ,3 ,5 ]
机构
[1] Indiana Univ, Sch Med, INBRAIN, Dept Psychiat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Lab Neurophenom, Dept Psychiat, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Inst Psychiat Res, Indianapolis, IN 46202 USA
[4] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[5] Indianapolis VA Med Ctr, Indianapolis, IN USA
[6] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[7] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
关键词
convergent functional genomics; brain; blood; bipolar; mood; biomarkers; BIPOLAR AFFECTIVE-DISORDER; GENE-EXPRESSION ANALYSIS; CELLULAR PLASTICITY CASCADES; ONSET MAJOR DEPRESSION; SUSCEPTIBILITY LOCI; CANDIDATE GENES; OLIGODENDROGLIAL ABNORMALITIES; MICROARRAY ANALYSIS; LINKAGE ANALYSES; TEMPORAL CORTEX;
D O I
10.1038/mp.2008.11
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.
引用
收藏
页码:156 / 174
页数:19
相关论文
共 50 条
  • [41] Classifications of Neurodegenerative Disorders Using a Multiplex Blood Biomarkers-Based Machine Learning Model
    Lin, Chin-Hsien
    Chiu, Shu-, I
    Chen, Ta-Fu
    Jang, Jyh-Shing Roger
    Chiu, Ming-Jang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 15
  • [42] The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics
    Hammarloef, Disa L.
    Canals, Rocio
    Hinton, Jay C. D.
    CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (05) : 643 - 651
  • [43] Convergent Functional Genomics: what we have learned and can learn about genes, pathways, and mechanisms
    Niculescu, Alexander B.
    Le-Niculescu, Helen
    NEUROPSYCHOPHARMACOLOGY, 2010, 35 (01) : 355 - 356
  • [44] Cortisol in functional neurological disorders: State, trait and prognostic biomarkers
    Weber, Samantha
    Buhler, Janine
    Messmer, Fabian
    Bruckmaier, Rupert
    Aybek, Selma
    JOURNAL OF PSYCHOSOMATIC RESEARCH, 2024, 179
  • [45] Identifying clinical features and blood biomarkers associated with mild cognitive impairment in Parkinson disease using machine learning
    Deng, Xiao
    Ning, Yilin
    Saffari, Seyed Ehsan
    Xiao, Bin
    Niu, Chenglin
    Ng, Samuel Yong Ern
    Chia, Nicole
    Choi, Xinyi
    Heng, Dede Liana
    Tan, Yi Jayne
    Ng, Ebonne
    Xu, Zheyu
    Tay, Kay-Yaw
    Au, Wing-Lok
    Ng, Adeline
    Tan, Eng-King
    Liu, Nan
    Tan, Louis C. S.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 (06) : 1658 - 1666
  • [46] Resting-State Functional Connectivity of the Anterior Cingulate Cortex Among Persons With Mood Disorders and Suicidal Behaviors
    Ambrosi, Elisa
    Curtis, Kaylah N.
    Goli, Puneetha
    Patriquin, Michelle A.
    Arciniegas, David B.
    Simonetti, Alessio
    Spalletta, Gianfranco
    Salas, Ramiro
    JOURNAL OF NEUROPSYCHIATRY AND CLINICAL NEUROSCIENCES, 2024, 36 (02) : 143 - 150
  • [47] Predicting reperfusion injury and functional status after stroke using blood biomarkers: the STROKELABED study
    Alessia Vignoli
    Elena Sticchi
    Benedetta Piccardi
    Vanessa Palumbo
    Cristina Sarti
    Alessandro Sodero
    Francesco Arba
    Enrico Fainardi
    Anna Maria Gori
    Betti Giusti
    Ada Kura
    Leonardo Tenori
    Marzia Baldereschi
    Journal of Translational Medicine, 23 (1)
  • [48] Family history of alcohol dependence modulates functional neurophysiology in mood/anxiety disorders
    Sjoerds, Z.
    van Tol, M-J
    van den Brink, W.
    van der Wee, N. J. A.
    Aleman, A.
    Beekman, A. T. F.
    Penninx, B. W. J. H.
    Veltman, D. J.
    PSYCHOLOGICAL MEDICINE, 2013, 43 (07) : 1487 - 1497
  • [49] Identifying brain functional connectivity biomarkers based on neighborhood decision rough set
    Ji J.-Z.
    Long T.
    Yang C.-C.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (04): : 1092 - 1100
  • [50] Identifying Candidate Serum Biomarkers of Exposure to Tunicamycins in Rats Using Two-Dimensional Electrophoresis
    Penno, Megan A. S.
    Bacic, Antony
    Colegate, Steven M.
    Hoffmann, Peter
    Michalski, Wojtek P.
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (06) : 2812 - 2826