Identifying blood biomarkers for mood disorders using convergent functional genomics

被引:156
|
作者
Le-Niculescu, H. [1 ,2 ,3 ]
Kurian, S. M. [4 ]
Yehyawi, N. [2 ,5 ]
Dike, C. [2 ,5 ]
Patel, S. D. [2 ,3 ]
Edenberg, H. J. [6 ]
Tsuang, M. T. [7 ]
Salomon, D. R. [4 ]
Nurnberger, J. I., Jr. [3 ]
Niculescu, A. B. [1 ,2 ,3 ,5 ]
机构
[1] Indiana Univ, Sch Med, INBRAIN, Dept Psychiat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Lab Neurophenom, Dept Psychiat, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Inst Psychiat Res, Indianapolis, IN 46202 USA
[4] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[5] Indianapolis VA Med Ctr, Indianapolis, IN USA
[6] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[7] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
关键词
convergent functional genomics; brain; blood; bipolar; mood; biomarkers; BIPOLAR AFFECTIVE-DISORDER; GENE-EXPRESSION ANALYSIS; CELLULAR PLASTICITY CASCADES; ONSET MAJOR DEPRESSION; SUSCEPTIBILITY LOCI; CANDIDATE GENES; OLIGODENDROGLIAL ABNORMALITIES; MICROARRAY ANALYSIS; LINKAGE ANALYSES; TEMPORAL CORTEX;
D O I
10.1038/mp.2008.11
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.
引用
收藏
页码:156 / 174
页数:19
相关论文
共 50 条
  • [31] Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
    Lin, Honghuang
    Himali, Jayandra J.
    Satizabal, Claudia L.
    Beiser, Alexa S.
    Levy, Daniel
    Benjamin, Emelia J.
    Gonzales, Mitzi M.
    Ghosh, Saptaparni
    Vasan, Ramachandran S.
    Seshadri, Sudha
    McGrath, Emer R.
    CELLS, 2022, 11 (09)
  • [32] Identification of Sex-Specific Vascular and Immune Signatures and Biomarkers of Mood Disorders
    Solano, Jose L.
    Dion-Albert, Laurence
    Lebel, Manon
    Menard, Caroline
    BIOLOGICAL PSYCHIATRY, 2024, 95 (10) : S35 - S36
  • [33] The underlying neurobiology of key functional domains in young people with mood and anxiety disorders: a systematic review
    Frank Iorfino
    Ian B. Hickie
    Rico S. C. Lee
    Jim Lagopoulos
    Daniel F. Hermens
    BMC Psychiatry, 16
  • [34] A functional genomics screen identifying blood cell development genes in Drosophila by undergraduates participating in a course-based research experience
    Evans, Cory J.
    Olson, John M.
    Mondal, Bama Charan
    Kandimalla, Pratyush
    Abbasi, Ariano
    Abdusamad, Mai M.
    Acosta, Osvaldo
    Ainsworth, Julia A.
    Akram, Haris M.
    Albert, Ralph B.
    Alegria-Leal, Elitzander
    Alexander, Kai Y.
    Ayala, Angelica C.
    Balashova, Nataliya S.
    Barber, Rebecca M.
    Bassi, Harmanjit
    Bennion, Sean P.
    Beyder, Miriam
    Bhatt, Kush, V
    Bhoot, Chinmay
    Bradshaw, Aaron W.
    Brannigan, Tierney G.
    Cao, Boyu
    Cashell, Yancey Y.
    Chai, Timothy
    Chan, Alex W.
    Chan, Carissa
    Chang, Inho
    Chang, Jonathan
    Chang, Michael T.
    Chang, Patrick W.
    Chang, Stephen
    Chari, Neel
    Chassiakos, Alexander J.
    Chen, Iris E.
    Chen, Vivian K.
    Chen, Zheying
    Cheng, Marsha R.
    Chiang, Mimi
    Chiu, Vivian
    Choi, Sharon
    Chung, Jun Ho
    Contreras, Liset
    Corona, Edgar
    Cruz, Courtney J.
    Cruz, Renae L.
    Dang, Jefferson M.
    Dasari, Suhas P.
    De la Fuente, Justin R. O.
    Del Rio, Oscar M. A.
    G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [35] Proteomic approaches to identify blood-based biomarkers for depression and bipolar disorders
    Preece, Rhian Lauren
    Han, Sung Yeon Sarah
    Bahn, Sabine
    EXPERT REVIEW OF PROTEOMICS, 2018, 15 (04) : 325 - 340
  • [36] The underlying neurobiology of key functional domains in young people with mood and anxiety disorders: a systematic review
    Iorfino, Frank
    Hickie, Ian B.
    Lee, Rico S. C.
    Lagopoulos, Jim
    Hermens, Daniel F.
    BMC PSYCHIATRY, 2016, 16
  • [37] Prediction of Depression in Individuals at High Familial Risk of Mood Disorders Using Functional Magnetic Resonance Imaging
    Whalley, Heather C.
    Sussmann, Jessika E.
    Romaniuk, Liana
    Stewart, Tiffany
    Papmeyer, Martina
    Sprooten, Emma
    Hackett, Suzanna
    Hall, Jeremy
    Lawrie, Stephen M.
    McIntosh, Andrew M.
    PLOS ONE, 2013, 8 (03):
  • [38] Functional biomarkers for neurodegenerative disorders based on the network paradigm
    Horwitz, Barry
    Rowe, James B.
    PROGRESS IN NEUROBIOLOGY, 2011, 95 (04) : 505 - 509
  • [39] Blood Proteomics Analysis Reveals Potential Biomarkers and Convergent Dysregulated Pathways in Autism Spectrum Disorder: A Pilot Study
    Mesleh, Areej
    Ehtewish, Hanan
    de la Fuente, Alberto
    Al-shamari, Hawra
    Ghazal, Iman
    Al-Faraj, Fatema
    Al-Shaban, Fouad
    Abdesselem, Houari B.
    Emara, Mohamed
    Alajez, Nehad M.
    Arredouani, Abdelilah
    Decock, Julie
    Albagha, Omar
    Stanton, Lawrence W.
    Abdulla, Sara A.
    El-Agnaf, Omar M. A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [40] Smartphone Sensor Data for Identifying and Monitoring Symptoms of Mood Disorders: A Longitudinal Observational Study
    Braund, Taylor A.
    Zin, May The
    Boonstra, Tjeerd W.
    Wong, Quincy J. J.
    Larsen, Mark E.
    Christensen, Helen
    Tillman, Gabriel
    O'Dea, Bridianne
    JMIR MENTAL HEALTH, 2022, 9 (05):