Identifying blood biomarkers for mood disorders using convergent functional genomics

被引:156
|
作者
Le-Niculescu, H. [1 ,2 ,3 ]
Kurian, S. M. [4 ]
Yehyawi, N. [2 ,5 ]
Dike, C. [2 ,5 ]
Patel, S. D. [2 ,3 ]
Edenberg, H. J. [6 ]
Tsuang, M. T. [7 ]
Salomon, D. R. [4 ]
Nurnberger, J. I., Jr. [3 ]
Niculescu, A. B. [1 ,2 ,3 ,5 ]
机构
[1] Indiana Univ, Sch Med, INBRAIN, Dept Psychiat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Lab Neurophenom, Dept Psychiat, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Inst Psychiat Res, Indianapolis, IN 46202 USA
[4] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[5] Indianapolis VA Med Ctr, Indianapolis, IN USA
[6] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[7] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
关键词
convergent functional genomics; brain; blood; bipolar; mood; biomarkers; BIPOLAR AFFECTIVE-DISORDER; GENE-EXPRESSION ANALYSIS; CELLULAR PLASTICITY CASCADES; ONSET MAJOR DEPRESSION; SUSCEPTIBILITY LOCI; CANDIDATE GENES; OLIGODENDROGLIAL ABNORMALITIES; MICROARRAY ANALYSIS; LINKAGE ANALYSES; TEMPORAL CORTEX;
D O I
10.1038/mp.2008.11
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.
引用
收藏
页码:156 / 174
页数:19
相关论文
共 50 条
  • [21] Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction
    Ayalew, M.
    Le-Niculescu, H.
    Levey, D. F.
    Jain, N.
    Changala, B.
    Patel, S. D.
    Winiger, E.
    Breier, A.
    Shekhar, A.
    Amdur, R.
    Koller, D.
    Nurnberger, J. I.
    Corvin, A.
    Geyer, M.
    Tsuang, M. T.
    Salomon, D.
    Schork, N. J.
    Fanous, A. H.
    O'Donovan, M. C.
    Niculescu, A. B.
    MOLECULAR PSYCHIATRY, 2012, 17 (09) : 887 - 905
  • [22] Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach
    Z A Rodd
    B A Bertsch
    W N Strother
    H Le-Niculescu
    Y Balaraman
    E Hayden
    R E Jerome
    L Lumeng
    J I Nurnberger
    H J Edenberg
    W J McBride
    A B Niculescu
    The Pharmacogenomics Journal, 2007, 7 : 222 - 256
  • [23] Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction
    M Ayalew
    H Le-Niculescu
    D F Levey
    N Jain
    B Changala
    S D Patel
    E Winiger
    A Breier
    A Shekhar
    R Amdur
    D Koller
    J I Nurnberger
    A Corvin
    M Geyer
    M T Tsuang
    D Salomon
    N J Schork
    A H Fanous
    M C O'Donovan
    A B Niculescu
    Molecular Psychiatry, 2012, 17 : 887 - 905
  • [24] Convergent functional genomics of cocaine misuse in humans and animal models
    Forero, Diego A.
    Gonzalez-Giraldo, Yeimy
    AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE, 2020, 46 (01) : 22 - 30
  • [25] Biomarkers in mood disorders: Integrating neuroimaging and clinical markers
    Kennedy, S. H.
    BIPOLAR DISORDERS, 2012, 14 : 32 - 32
  • [26] An integrative functional genomics approach for discovering biomarkers in schizophrenia
    Vawter, Marquis P.
    Mamdani, Firoza
    Macciardi, Fabio
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2011, 10 (06) : 387 - 399
  • [27] Identifying Blood Transcriptome Biomarkers of Alzheimer’s Disease Using Transgenic Mice
    Shinichiro Ochi
    Jun-ichi Iga
    Yu Funahashi
    Yuta Yoshino
    Kiyohiro Yamazaki
    Hiroshi Kumon
    Hiroaki Mori
    Yuki Ozaki
    Takaaki Mori
    Shu-ichi Ueno
    Molecular Neurobiology, 2020, 57 : 4941 - 4951
  • [28] Identifying and validating blood mRNA biomarkers for acute and chronic insufficient sleep in humans: a machine learning approach
    Laing, Emma E.
    Moller-Levet, Carla S.
    Dijk, Derk-Jan
    Archer, Simon N.
    SLEEP, 2019, 42 (01)
  • [29] Blood based biomarkers for movement disorders
    Morris, Huw R.
    ACTA NEUROLOGICA SCANDINAVICA, 2022, 146 (04): : 353 - 361
  • [30] Blood based biomarkers beyond genomics for lung cancer screening
    Hanash, Samir M.
    Ostrin, Edwin Justin
    Fahrmann, Johannes F.
    TRANSLATIONAL LUNG CANCER RESEARCH, 2018, 7 (03) : 327 - 335