Identifying blood biomarkers for mood disorders using convergent functional genomics

被引:156
|
作者
Le-Niculescu, H. [1 ,2 ,3 ]
Kurian, S. M. [4 ]
Yehyawi, N. [2 ,5 ]
Dike, C. [2 ,5 ]
Patel, S. D. [2 ,3 ]
Edenberg, H. J. [6 ]
Tsuang, M. T. [7 ]
Salomon, D. R. [4 ]
Nurnberger, J. I., Jr. [3 ]
Niculescu, A. B. [1 ,2 ,3 ,5 ]
机构
[1] Indiana Univ, Sch Med, INBRAIN, Dept Psychiat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Lab Neurophenom, Dept Psychiat, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Inst Psychiat Res, Indianapolis, IN 46202 USA
[4] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[5] Indianapolis VA Med Ctr, Indianapolis, IN USA
[6] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[7] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
关键词
convergent functional genomics; brain; blood; bipolar; mood; biomarkers; BIPOLAR AFFECTIVE-DISORDER; GENE-EXPRESSION ANALYSIS; CELLULAR PLASTICITY CASCADES; ONSET MAJOR DEPRESSION; SUSCEPTIBILITY LOCI; CANDIDATE GENES; OLIGODENDROGLIAL ABNORMALITIES; MICROARRAY ANALYSIS; LINKAGE ANALYSES; TEMPORAL CORTEX;
D O I
10.1038/mp.2008.11
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.
引用
收藏
页码:156 / 174
页数:19
相关论文
共 50 条
  • [1] Identifying blood biomarkers for mood disorders using convergent functional genomics
    H Le-Niculescu
    S M Kurian
    N Yehyawi
    C Dike
    S D Patel
    H J Edenberg
    M T Tsuang
    D R Salomon
    J I Nurnberger
    A B Niculescu
    Molecular Psychiatry, 2009, 14 : 156 - 174
  • [2] Identification of blood biomarkers for psychosis using convergent functional genomics
    Kurian, S. M.
    Le-Niculescu, H.
    Patel, S. D.
    Bertram, D.
    Davis, J.
    Dike, C.
    Yehyawi, N.
    Lysaker, P.
    Dustin, J.
    Caligiuri, M.
    Lohr, J.
    Lahiri, D. K.
    Nurnberger, J. I., Jr.
    Faraone, S. V.
    Geyer, M. A.
    Tsuang, M. T.
    Schork, N. J.
    Salomon, D. R.
    Niculescu, A. B.
    MOLECULAR PSYCHIATRY, 2011, 16 (01) : 37 - 58
  • [3] Identification of blood biomarkers for psychosis using convergent functional genomics
    S M Kurian
    H Le-Niculescu
    S D Patel
    D Bertram
    J Davis
    C Dike
    N Yehyawi
    P Lysaker
    J Dustin
    M Caligiuri
    J Lohr
    D K Lahiri
    J I Nurnberger
    S V Faraone
    M A Geyer
    M T Tsuang
    N J Schork
    D R Salomon
    A B Niculescu
    Molecular Psychiatry, 2011, 16 : 37 - 58
  • [4] Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms
    Le-Niculescu, H.
    Balaraman, Y.
    Patel, S. D.
    Ayalew, M.
    Gupta, J.
    Kuczenski, R.
    Shekhar, A.
    Schork, N.
    Geyer, M. A.
    Niculescu, A. B.
    TRANSLATIONAL PSYCHIATRY, 2011, 1 : e9 - e9
  • [5] Convergent Functional Genomics of Psychiatric Disorders
    Niculescu, Alexander B.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2013, 162 (07) : 587 - 594
  • [6] Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms
    H Le-Niculescu
    Y Balaraman
    S D Patel
    M Ayalew
    J Gupta
    R Kuczenski
    A Shekhar
    N Schork
    M A Geyer
    A B Niculescu
    Translational Psychiatry, 2011, 1 : e9 - e9
  • [7] Convergent Functional Genomics of bipolar disorder: From animal model pharmacogenomics to human genetics and biomarkers
    Le-Niculescu, H.
    McFarland, M. J.
    Mamidipalli, S.
    Ogden, C. A.
    Kuczenski, R.
    Kurian, S. M.
    Salomon, D. R.
    Tsuang, Ming T.
    Nurnberger, J. I., Jr.
    Niculescu, A. B.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2007, 31 (06) : 897 - 903
  • [8] Convergent functional genomics of stem cell-derived cells
    Niculescu, A. B.
    TRANSLATIONAL PSYCHIATRY, 2013, 3 : e305 - e305
  • [9] Convergent Functional Genomics of Genome-Wide Association Data for Bipolar Disorder: Comprehensive Identification of Candidate Genes, Pathways and Mechanisms
    Le-Niculescu, H.
    Patel, S. D.
    Bhat, M.
    Kuczenski, R.
    Faraone, S. V.
    Tsuang, M. T.
    McMahon, F. J.
    Schork, N. J.
    Nurnberger, J. I., Jr.
    Niculescu, A. B., III
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2009, 150B (02) : 155 - 181
  • [10] Convergent functional genomics: A Bayesian candidate gene identification approach for complex disorders
    Bertsch, B
    Ogden, CA
    Sidhu, K
    Le-Niculescu, H
    Kuczenski, R
    Niculescu, AB
    METHODS, 2005, 37 (03) : 274 - 279