Port-Hamiltonian based control of water distribution networks?

被引:7
作者
Perryman, Richard [1 ]
Taylor, Joshua A. [1 ]
Karney, Bryan [2 ]
机构
[1] Univ Toronto, Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Univ Toronto, Civil Engn, Toronto, ON M5S 1A4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Port-Hamiltonian systems; Nonlinear systems; Passivity; Incremental models; SCALE HYDRAULIC NETWORKS; OUTPUT REGULATION; SYSTEMS; STABILIZATION; APPROXIMATION; PASSIVITY;
D O I
10.1016/j.sysconle.2022.105402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We design controllers for a nonlinear model of a water distribution network (WDN). Most existing approaches to the control of WDNs model the pumps as simple pressure gains. We show that a commonly used empirical model of a pump leads to a port-Hamiltonian (pH) and hence stable system. We use standard arguments to show that WDNs are incrementally pH, and show that local PI controllers preserve stability. These controllers are robust in that they do not require specific knowledge of the equilibrium input. We further show that controllers based on physical feedback that WDN operators usually rely on have merit in the pH framework. All of these controllers are shown to be useful in mitigating disturbances and tracking setpoints corresponding to assignable equilibria.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
Camlibel MK, 2013, IEEE DECIS CONTR P, P2538, DOI 10.1109/CDC.2013.6760262
[2]  
Chaudhry M., 1979, APPL HYDRAULIC TRANS
[3]   Port-Hamiltonian Modeling and Control of a Micro-Channel Experimental Plant [J].
Cisneros, Nelson ;
Rojas, Alejandro Jose ;
Ramirez, Hector .
IEEE ACCESS, 2020, 8 :176935-176946
[4]  
De Persis C., 2008, P 17 IFAC WORLD C SE, V41, P319, DOI [https://doi.org/10.3182/20080706-5-KR-1001.00054, DOI 10.3182/20080706-5-KR-1001.00054]
[5]   Output Regulation of Large-Scale Hydraulic Networks [J].
De Persis, Claudio ;
Jensen, Tom Norgaard ;
Ortega, Romeo ;
Wisniewski, Rafal .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (01) :238-245
[6]   Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls [J].
De Persis, Claudio ;
Kallesoe, Carsten Skovmose .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (06) :1371-1383
[7]  
Duindam V, 2009, MODELING AND CONTROL OF COMPLEX PHYSICAL SYSTEMS: THE PORT-HAMILTONIAN APPROACH, P1, DOI 10.1007/978-3-642-03196-0
[8]   Energy-Optimal Pump Scheduling and Water Flow [J].
Fooladivanda, Dariush ;
Taylor, Joshua A. .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (03) :1016-1026
[9]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[10]   DISSIPATIVE DYNAMICAL-SYSTEMS - BASIC INPUT-OUTPUT AND STATE PROPERTIES [J].
HILL, DJ ;
MOYLAN, PJ .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1980, 309 (05) :327-357