Low-Temperature Bonded GaN-on-Diamond HEMTs With 11 W/mm Output Power at 10 GHz

被引:88
作者
Chao, Pane-Chane [1 ]
Chu, Kenneth [1 ]
Creamer, Carlton [1 ]
Diaz, Jose [1 ]
Yurovchak, Tom [1 ]
Shur, Michael [2 ]
Kallaher, Ray [3 ]
McGray, Craig [3 ]
Via, Glen David [4 ]
Blevins, John D. [4 ]
机构
[1] BAE Syst, Nashua, NH 03061 USA
[2] Rensselaer Polytech Inst, Troy, NY 12180 USA
[3] Modern Microsyst Inc, Silver Spring, MD 20904 USA
[4] RYDD, Air Force Res Lab, Dayton, OH 45433 USA
关键词
Coefficient of thermal expansion (CTE); ELO; GaN-on-diamond; GaN-on-Si; GaN-on-SiC; high electron mobility transistors (HEMTs); high thermal conductivity diamond; infrared (IR) imaging; low-temperature bonding; pulsed I-V; RF power capability; RF power density; thermal boundary resistance (TBR); thermal modeling; thermal resistance;
D O I
10.1109/TED.2015.2480756
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report recent progress on GaN-on-diamond high electron mobility transistors (HEMTs) fabricated using a low-temperature device-transfer process. The devices were first fabricated on a GaN-on-SiC epitaxial wafer and were subsequently separated from the SiC and bonded onto a high-thermal-conductivity diamond substrate at low temperature. The resulting 12x50 mu m GaN-on-diamond HEMTs demonstrated the state-of-the-art electrical characteristics, including a maximum drain current density of 1.2 A/mm and a peak transconductance of 390 mS/mm. CW load-pull measurements at 10 GHz yielded an RF output power density of 11 W/mm with 51% associated power-added efficiency. Device measurements show that the GaN-on-diamond devices maintained slightly lower channel temperatures than their GaN-on-SiC counterparts while delivering 3.6 times higher RF power within the same active area. These results demonstrate that the GaN device-transfer process is capable of preserving intrinsic GaN-on-SiC transistor electrical performance while taking advantage of the excellent thermal properties of diamond substrates.
引用
收藏
页码:3658 / 3664
页数:7
相关论文
共 12 条
[11]   Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers [J].
Riedel, Gernot J. ;
Pomeroy, James W. ;
Hilton, Keith P. ;
Maclean, Jessica O. ;
Wallis, David J. ;
Uren, Michael J. ;
Martin, Trevor ;
Forsberg, Urban ;
Lundskog, Anders ;
Kakanakova-Georgieva, Anelia ;
Pozina, Galia ;
Janzen, Erik ;
Lossy, Richard ;
Pazirandeh, Reza ;
Brunner, Frank ;
Wuerfl, Joachim ;
Kuball, Martin .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (02) :103-106
[12]  
Tyhach M, 2014, P IEEE LES EASTM