Low-Temperature Bonded GaN-on-Diamond HEMTs With 11 W/mm Output Power at 10 GHz

被引:88
作者
Chao, Pane-Chane [1 ]
Chu, Kenneth [1 ]
Creamer, Carlton [1 ]
Diaz, Jose [1 ]
Yurovchak, Tom [1 ]
Shur, Michael [2 ]
Kallaher, Ray [3 ]
McGray, Craig [3 ]
Via, Glen David [4 ]
Blevins, John D. [4 ]
机构
[1] BAE Syst, Nashua, NH 03061 USA
[2] Rensselaer Polytech Inst, Troy, NY 12180 USA
[3] Modern Microsyst Inc, Silver Spring, MD 20904 USA
[4] RYDD, Air Force Res Lab, Dayton, OH 45433 USA
关键词
Coefficient of thermal expansion (CTE); ELO; GaN-on-diamond; GaN-on-Si; GaN-on-SiC; high electron mobility transistors (HEMTs); high thermal conductivity diamond; infrared (IR) imaging; low-temperature bonding; pulsed I-V; RF power capability; RF power density; thermal boundary resistance (TBR); thermal modeling; thermal resistance;
D O I
10.1109/TED.2015.2480756
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report recent progress on GaN-on-diamond high electron mobility transistors (HEMTs) fabricated using a low-temperature device-transfer process. The devices were first fabricated on a GaN-on-SiC epitaxial wafer and were subsequently separated from the SiC and bonded onto a high-thermal-conductivity diamond substrate at low temperature. The resulting 12x50 mu m GaN-on-diamond HEMTs demonstrated the state-of-the-art electrical characteristics, including a maximum drain current density of 1.2 A/mm and a peak transconductance of 390 mS/mm. CW load-pull measurements at 10 GHz yielded an RF output power density of 11 W/mm with 51% associated power-added efficiency. Device measurements show that the GaN-on-diamond devices maintained slightly lower channel temperatures than their GaN-on-SiC counterparts while delivering 3.6 times higher RF power within the same active area. These results demonstrate that the GaN device-transfer process is capable of preserving intrinsic GaN-on-SiC transistor electrical performance while taking advantage of the excellent thermal properties of diamond substrates.
引用
收藏
页码:3658 / 3664
页数:7
相关论文
共 12 条
[1]   Full-Wafer Characterization of AlGaN/GaN HEMTs on Free-Standing CVD Diamond Substrates [J].
Chabak, Kelson D. ;
Gillespie, James K. ;
Miller, Virginia ;
Crespo, Antonio ;
Roussos, Jason ;
Trejo, Manuel ;
Walker, Dennis E., Jr. ;
Via, Glen D. ;
Jessen, Gregg H. ;
Wasserbauer, John ;
Faili, Firooz ;
Babic, Dubravko I. ;
Francis, Daniel ;
Ejeckam, Felix .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (02) :99-101
[2]  
Chao P., 2013, CS MANTECH Conf, P179
[3]  
Cho J, 2014, PROCEEDINGS OF THE ASME 4TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER - 2013
[4]   AlGaN/GaN HEMTs on diamond substrate with over 7W/mm output power density at 10 GHz [J].
Dumka, D. C. ;
Chou, T. M. ;
Faili, F. ;
Francis, D. ;
Ejeckam, F. .
ELECTRONICS LETTERS, 2013, 49 (20) :1298-U88
[5]  
Dumka D.C., 2013, IEEE 2013, Compound Semiconductor Integrated Circuit Symposium (CSICS), P1, DOI DOI 10.1109/CSICS.2013.6659225
[6]   GaN-on-Diamond: A Brief History [J].
Ejeckam, Felix ;
Francis, Daniel ;
Faili, Firooz ;
Twitchen, Daniel ;
Bolliger, Bruce ;
Babic, Dubravko ;
Felbinger, Jonathan .
2014 LESTER EASTMAN CONFERENCE ON HIGH PERFORMANCE DEVICES (LEC), 2014,
[7]   Comparison of GaNHEMTs on diamond and SiC substrates [J].
Felbinger, Jonathan G. ;
Chandra, M. V. S. ;
Sun, Yunju ;
Eastman, Lester F. ;
Wasserbauer, John ;
Faili, Firooz ;
Babic, Dubravko ;
Francis, Daniel ;
Ejeckam, Felix .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (11) :948-950
[8]  
Jessen GH, 2006, COMP SEMICOND INTEGR, P271
[9]  
Komiak J.J., 2011, IEEE MTT-S Int. Microwave Symp. Dig, P1, DOI DOI 10.1109/MWSYM.2011.5972561
[10]  
Koudymov A., 2008, INT J HIGH SPEED ELE, V18, P935, DOI [10.1142/S0129156408005898, DOI 10.1142/S0129156408005898]