Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis

被引:5
作者
Duarte, Afonso M. S. [1 ]
Psomopoulos, Fotis E. [2 ,3 ]
Blanchet, Christophe [4 ]
Bonvin, Alexandre M. J. J. [5 ]
Corpas, Manuel [6 ]
Franc, Alain [7 ]
Jimenez, Rafael C. [8 ]
de Lucas, Jesus M. [9 ]
Nyronen, Tommi [10 ]
Sipos, Gergely [11 ]
Suhr, Stephanie B. [12 ]
机构
[1] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, P-2780157 Oeiras, Portugal
[2] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, GR-54006 Thessaloniki, Greece
[3] Ctr Res & Technol Hellas, Thessaloniki, Greece
[4] IFB Core, Inst Francais Bioinformat, CNRS, UMS 3601, Gif Sur Yvette, France
[5] Univ Utrecht, Fac Sci, Bijvoet Ctr Biomol Res, Utrecht, Netherlands
[6] Genome Anal Ctr, Norwich, Norfolk, England
[7] INRA, UMR BIOGECO 1202, Cestas, France
[8] ELIXIR Hub, Cambridge, England
[9] Univ Cantabria, Consejo Super Invest Cient, Inst Fis Cantabria, E-39005 Santander, Spain
[10] IT Ctr Sci, CSC, Espoo, Finland
[11] EGI Eu, Amsterdam, Netherlands
[12] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
关键词
HEALTH-CARE;
D O I
10.3389/fgene.2015.00197
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1975, Clustering Algorithms
[2]   CLOUD COMPUTING IN HEALTHCARE AND BIOMEDICINE [J].
Calabrese, Barbara ;
Cannataro, Mario .
SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2015, 16 (01) :1-18
[3]   Big data in biomedicine [J].
Costa, Fabricio F. .
DRUG DISCOVERY TODAY, 2014, 19 (04) :433-440
[4]   READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data [J].
Foerstner, Konrad U. ;
Vogel, Joerg ;
Sharma, Cynthia M. .
BIOINFORMATICS, 2014, 30 (23) :3421-3423
[5]   Global patterns in biodiversity [J].
Gaston, KJ .
NATURE, 2000, 405 (6783) :220-227
[6]   A scoping review of cloud computing in healthcare [J].
Griebel, Lena ;
Prokosch, Hans-Ulrich ;
Koepcke, Felix ;
Toddenroth, Dennis ;
Christoph, Jan ;
Leb, Ines ;
Engel, Igor ;
Sedlmayr, Martin .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
[7]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[8]   Chipster: user-friendly analysis software for microarray and other high-throughput data [J].
Kallio, M. Aleksi ;
Tuimala, Jarno T. ;
Hupponen, Taavi ;
Klemela, Petri ;
Gentile, Massimiliano ;
Scheinin, Ilari ;
Koski, Mikko ;
Kaki, Janne ;
Korpelainen, Eija I. .
BMC GENOMICS, 2011, 12
[9]  
Mayr E., 1985, GROWTH BIOL THOUGHT
[10]  
Nyronen T. H., 2012, P WICSA ECSA 2012 CO, P37, DOI DOI 10.1145/2361999.2362006