Lions-type compactness and Rubik actions on the Heisenberg group

被引:25
作者
Balogh, Zoltan M. [1 ]
Kristaly, Alexandru [2 ]
机构
[1] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
[2] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
基金
瑞士国家科学基金会;
关键词
SYMMETRIC CRITICALITY; EXISTENCE; PRINCIPLE; EQUATION; THEOREM; SPACES;
D O I
10.1007/s00526-012-0543-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group is provided by the unitary group U(n) x {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein's horizontal Sobolev space . As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) x {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.
引用
收藏
页码:89 / 109
页数:21
相关论文
共 23 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Polar coordinates in Carnot groups [J].
Balogh, ZM ;
Tyson, JT .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (04) :697-730
[3]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[4]  
Biagini S, 1995, B UNIONE MAT ITAL, V9B, P883
[5]   A negative answer to a one-dimensional symmetry problem in the Heisenberg group [J].
Birindelli, I ;
Lanconelli, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (04) :357-372
[6]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[7]   A COMPACTNESS LEMMA [J].
ESTEBAN, MJ ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (04) :381-385
[8]   ESTIMATES FOR DELTA-BAR B COMPLEX AND ANALYSIS ON HEISENBERG GROUP [J].
FOLLAND, GB ;
STEIN, EM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (04) :429-522
[9]   EXISTENCE AND NONEXISTENCE RESULTS FOR SEMILINEAR EQUATIONS ON THE HEISENBERG-GROUP [J].
GAROFALO, N ;
LANCONELLI, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (01) :71-98
[10]  
Gromov M., 1996, Progr. Math., V144, P79