Cross-Domain Few-Shot Contrastive Learning for Hyperspectral Images Classification

被引:4
|
作者
Zhang, Suhua [1 ,2 ]
Chen, Zhikui [1 ]
Wang, Dan [2 ]
Wang, Z. Jane [2 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian 116621, Peoples R China
[2] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Contrastive learning; few-shot learning (FSL); hyperspectral image (HSI) classification; NETWORK;
D O I
10.1109/LGRS.2022.3227164
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning has achieved impressive results on hyperspectral image (HSI) classification, which generally requires sufficient training samples and a huge number of parameters. However, it is challenging to label HSIs, and likely only a few samples are available in practice. Learning a large number of parameters by the model is also resource-intensive. This letter proposes an HSI classification model that achieves promising classification performance with fewer parameters in few-shot settings. The proposed model adopts the residual 3-D-convolution neural network (CNN) as a feature extraction network, and contrastive learning is introduced to learn more discriminative representations for HSIs which can conquer the obstacles from HSIs' high interclass similarity and large intraclass variance. The proposed few-shot contrastive learning HSI classification model is tested on five popular HSI datasets and outperforms the state-of-the-art models.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Li, Zhaokui
    Liu, Ming
    Chen, Yushi
    Xu, Yimin
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Cross-Domain Few-Shot Hyperspectral Image Classification With Cross-Modal Alignment and Supervised Contrastive Learning
    Li, Zhaokui
    Zhang, Chenyang
    Wang, Yan
    Li, Wei
    Du, Qian
    Fang, Zhuoqun
    Chen, Yushi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [3] DUAL GRAPH CROSS-DOMAIN FEW-SHOT LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Yuxiang
    Li, Wei
    Zhang, Mengmeng
    Tao, Ran
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3573 - 3577
  • [4] Few-Shot Learning With Prototype Rectification for Cross-Domain Hyperspectral Image Classification
    Qin, Anyong
    Yuan, Chaoqi
    Li, Qiang
    Luo, Xiaoliu
    Yang, Feng
    Song, Tiecheng
    Gao, Chenqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Adaptive Domain-Adversarial Few-Shot Learning for Cross-Domain Hyperspectral Image Classification
    Ye, Zhen
    Wang, Jie
    Liu, Huan
    Zhang, Yu
    Li, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Semantic Guided prototype learning for Cross-Domain Few-Shot hyperspectral image classification
    Li, Yuhang
    He, Jinrong
    Liu, Hanchi
    Zhang, Yurong
    Li, Zhaokui
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 260
  • [7] Tensor-Based Few-Shot Learning for Cross-Domain Hyperspectral Image Classification
    Tang, Haojin
    Yang, Xiaofei
    Tang, Dong
    Dong, Yiru
    Zhang, Li
    Xie, Weixin
    REMOTE SENSING, 2024, 16 (22)
  • [8] Cross-Domain Few-Shot Learning Based on Feature Disentanglement for Hyperspectral Image Classification
    Qin, Boao
    Feng, Shou
    Zhao, Chunhui
    Li, Wei
    Tao, Ran
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [9] Graph Information Aggregation Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Zhang, Yuxiang
    Li, Wei
    Zhang, Mengmeng
    Wang, Shuai
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1912 - 1925
  • [10] SELM: Self-Motivated Ensemble Learning Model for Cross-Domain Few-Shot Classification in Hyperspectral Images
    Zhao, Shiyuan
    Bai, Yu
    Shao, Shuai
    Liu, Weifeng
    Ge, Xinmin
    Li, Ye
    Liu, Baodi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5